owl-con-demo / entailment_inference.py
Hritik
edit code for nle inference
3a496ae
import os
import csv
import json
import torch
import argparse
import pandas as pd
import torch.nn as nn
from tqdm import tqdm
from collections import defaultdict
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from torch.utils.data import DataLoader
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
from peft import LoraConfig, get_peft_model
from data_utils.xgpt3_dataset import MultiModalDataset
from utils import batchify
softmax = nn.Softmax(dim=2)
def get_entail(logits, input_ids, tokenizer):
logits = softmax(logits)
token_id_yes = tokenizer.encode('Yes', add_special_tokens = False)[0]
token_id_no = tokenizer.encode('No', add_special_tokens = False)[0]
entailment = []
for j in range(len(logits)):
for i in range(len(input_ids[j])):
if input_ids[j][i] == tokenizer.pad_token_id: # pad token if the answer is not present
i = i - 1
break
elif i == len(input_ids[j]) - 1:
break
score = logits[j][i][token_id_yes] / (logits[j][i][token_id_yes] + logits[j][i][token_id_no])
entailment.append(score)
entailment = torch.stack(entailment)
return entailment
def get_scores(model, tokenizer, dataloader):
with torch.no_grad():
for index, inputs in tqdm(enumerate(dataloader)):
for k, v in inputs.items():
if torch.is_tensor(v):
if v.dtype == torch.float:
inputs[k] = v.bfloat16()
inputs[k] = inputs[k].to(model.device)
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = None, \
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
logits = outputs['logits']
entail_scores = get_entail(logits, inputs['input_ids'], tokenizer)
return entail_scores[0].item()