# coding=utf-8 # Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MplugOwl model configuration """ import copy import os from typing import Union from transformers.configuration_utils import PretrainedConfig from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from transformers.utils import logging from transformers.models.auto import CONFIG_MAPPING logger = logging.get_logger(__name__) MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json", # See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl } class MplugOwlVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). ```""" model_type = "mplug_owl_vision_model" def __init__( self, hidden_size=1024, intermediate_size=4096, projection_dim=768, num_hidden_layers=24, num_attention_heads=16, num_channels=3, image_size=224, patch_size=14, hidden_act="quick_gelu", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, use_flash_attn=False, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.use_flash_attn = use_flash_attn @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from MplugOwlConfig if config_dict.get("model_type") == "mplug-owl": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class MplugOwlVisualAbstractorConfig(PretrainedConfig): model_type = "mplug_owl_visual_abstract" def __init__( self, hidden_size=1024, # num_hidden_layers=6, # num_attention_heads=16, # intermediate_size=4096, # attention_probs_dropout_prob=0.1, # initializer_range=0.02, layer_norm_eps=1e-6, # encoder_hidden_size=1024, # **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.encoder_hidden_size = encoder_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the visual_abstractor config dict if we are loading from MplugOwlConfig if config_dict.get("model_type") == "mplug-owl": config_dict = config_dict["abstractor_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class MplugOwlConfig(PretrainedConfig): r""" [`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`]. It is used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`]. visual_abstractor_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`]. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize any [`PretrainedConfig`]. num_query_tokens (`int`, *optional*, defaults to 32): The number of query tokens passed through the Transformer. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... MplugOwlVisionConfig, ... MplugOwlVisualAbstractorConfig, ... OPTConfig, ... MplugOwlConfig, ... MplugOwlForConditionalGeneration, ... ) >>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration >>> configuration = MplugOwlConfig() >>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration >>> model = MplugOwlForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig >>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations >>> vision_config = MplugOwlVisionConfig() >>> visual_abstractor_config = MplugOwlVisualAbstractorConfig() >>> text_config = OPTConfig() >>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config) ```""" model_type = "mplug-owl" is_composition = True def __init__( self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs ): super().__init__(**kwargs) if vision_config is None: vision_config = MplugOwlVisionConfig().to_dict() logger.info("vision_config is None.") if visual_abstractor_config is None: visual_abstractor_config = {} logger.info("abstractor_config is None. ") if text_config is None: # we use LLAMA 7b by default from ..llama.configuration_llama import LlamaConfig text_config = LlamaConfig(pad_token_id=2).to_dict() logger.info("text_config is None.") self.vision_config = MplugOwlVisionConfig(**vision_config) self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config) # self.visual_abstractor_config.layer_norm_eps = 1e-6 text_model_type = text_config["model_type"] if "model_type" in text_config else "llama" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.tie_word_embeddings = self.text_config.tie_word_embeddings self.is_encoder_decoder = self.text_config.is_encoder_decoder self.num_query_tokens = num_query_tokens # self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.initializer_factor = 1.0 self.initializer_range = 0.02 for attr in dir(self.text_config): if not hasattr(self, attr): setattr(self, attr, getattr(self.text_config, attr)) @classmethod def from_vision_visual_abstractor_text_configs( cls, vision_config: MplugOwlVisionConfig, visual_abstractor_config: MplugOwlVisualAbstractorConfig, text_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language model configurations. Returns: [`MplugOwlConfig`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), visual_abstractor_config=visual_abstractor_config.to_dict(), text_config=text_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict() output["text_config"] = self.text_config.to_dict() output["model_type"] = self.__class__.model_type return output