File size: 3,263 Bytes
2531606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# How to build | 如何构建: docker build -t gpt-academic --network=host  -f Dockerfile+ChatGLM .
# How to run | (1) 我想直接一键运行(选择0号GPU): docker run --rm -it --net=host --gpus \"device=0\" gpt-academic
# How to run | (2) 我想运行之前进容器做一些调整(选择1号GPU): docker run --rm -it --net=host --gpus \"device=1\" gpt-academic bash
 
# 从NVIDIA源,从而支持显卡运损(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
ARG useProxyNetwork=''
RUN apt-get update
RUN apt-get install -y curl proxychains curl 
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing

# 配置代理网络(构建Docker镜像时使用)
# # comment out below if you do not need proxy network | 如果不需要翻墙 - 从此行向下删除
RUN $useProxyNetwork curl cip.cc
RUN sed -i '$ d' /etc/proxychains.conf
RUN sed -i '$ d' /etc/proxychains.conf
# 在这里填写主机的代理协议(用于从github拉取代码)
RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf
ARG useProxyNetwork=proxychains
# # comment out above if you do not need proxy network | 如果不需要翻墙 - 从此行向上删除


# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git
WORKDIR /gpt/chatgpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_newbing.txt

# 预热CHATGLM参数(非必要 可选步骤)
RUN echo ' \n\
from transformers import AutoModel, AutoTokenizer \n\
chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) \n\
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() ' >> warm_up_chatglm.py
RUN python3 -u warm_up_chatglm.py

# 禁用缓存,确保更新代码
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
RUN $useProxyNetwork git pull

# 预热Tiktoken模块
RUN python3  -c 'from check_proxy import warm_up_modules; warm_up_modules()'

# 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤)
# 可同时填写多个API-KEY,支持openai的key和api2d的key共存,用英文逗号分割,例如API_KEY = "sk-openaikey1,fkxxxx-api2dkey2,........"
# LLM_MODEL 是选择初始的模型
# LOCAL_MODEL_DEVICE 是选择chatglm等本地模型运行的设备,可选 cpu 和 cuda
# [说明: 以下内容与`config.py`一一对应,请查阅config.py来完成一下配置的填写]
RUN echo ' \n\
API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\
USE_PROXY = True \n\
LLM_MODEL = "chatglm" \n\
LOCAL_MODEL_DEVICE = "cuda" \n\
proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py

# 启动
CMD ["python3", "-u", "main.py"]