Spaces:
Running
Running
File size: 49,116 Bytes
5a7000a 305232b 5a7000a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
subgen_version = '2024.5.15.78'
from datetime import datetime
import subprocess
import os
import json
import xml.etree.ElementTree as ET
import threading
import sys
import time
import queue
import logging
import gc
import io
import random
from typing import BinaryIO, Union, Any
from fastapi import FastAPI, File, UploadFile, Query, Header, Body, Form, Request
from fastapi.responses import StreamingResponse, RedirectResponse, HTMLResponse
import numpy as np
import stable_whisper
from stable_whisper import Segment
import requests
import av
import ffmpeg
import whisper
import re
from watchdog.observers.polling import PollingObserver as Observer
from watchdog.events import FileSystemEventHandler
import faster_whisper
def get_key_by_value(d, value):
reverse_dict = {v: k for k, v in d.items()}
return reverse_dict.get(value)
def convert_to_bool(in_bool):
# Convert the input to string and lower case, then check against true values
return str(in_bool).lower() in ('true', 'on', '1', 'y', 'yes')
# Function to read environment variables from a file and return them as a dictionary
def get_env_variables_from_file(filename):
env_vars = {}
try:
with open(filename, 'r') as file:
for line in file:
if line.strip() and not line.startswith('#'):
key, value = line.strip().split('=', 1)
env_vars[key.strip()] = value.strip()
except FileNotFoundError:
print(f"File {filename} not found. Using default values.")
return env_vars
def set_env_variables(filename):
try:
with open(filename, 'r') as file:
for line in file:
if line.strip() and not line.startswith('#'):
key, value = line.strip().split('=', 1)
os.environ[key.strip()] = value.strip().strip('\"').strip("'")
except FileNotFoundError:
print(f"File {filename} not found. Environment variables not set.")
def update_env_variables():
global plextoken, plexserver, jellyfintoken, jellyfinserver, whisper_model, whisper_threads
global concurrent_transcriptions, transcribe_device, procaddedmedia, procmediaonplay
global namesublang, skipifinternalsublang, webhookport, word_level_highlight, debug
global use_path_mapping, path_mapping_from, path_mapping_to, model_location, monitor
global transcribe_folders, transcribe_or_translate, force_detected_language_to
global clear_vram_on_complete, compute_type, append, reload_script_on_change
global model_prompt, custom_model_prompt, lrc_for_audio_files, custom_regroup
global subextension, subextensionSDH, detect_language_length
plextoken = os.getenv('PLEXTOKEN', 'token here')
plexserver = os.getenv('PLEXSERVER', 'http://192.168.1.111:32400')
jellyfintoken = os.getenv('JELLYFINTOKEN', 'token here')
jellyfinserver = os.getenv('JELLYFINSERVER', 'http://192.168.1.111:8096')
whisper_model = os.getenv('WHISPER_MODEL', 'large-v3')
whisper_threads = int(os.getenv('WHISPER_THREADS', 12))
concurrent_transcriptions = int(os.getenv('CONCURRENT_TRANSCRIPTIONS', 4))
transcribe_device = os.getenv('TRANSCRIBE_DEVICE', 'cuda')
procaddedmedia = convert_to_bool(os.getenv('PROCADDEDMEDIA', True))
procmediaonplay = convert_to_bool(os.getenv('PROCMEDIAONPLAY', True))
namesublang = os.getenv('NAMESUBLANG', 'aa')
skipifinternalsublang = os.getenv('SKIPIFINTERNALSUBLANG', 'eng')
webhookport = int(os.getenv('WEBHOOKPORT', 9000))
word_level_highlight = convert_to_bool(os.getenv('WORD_LEVEL_HIGHLIGHT', False))
debug = convert_to_bool(os.getenv('DEBUG', True))
use_path_mapping = convert_to_bool(os.getenv('USE_PATH_MAPPING', False))
path_mapping_from = os.getenv('PATH_MAPPING_FROM', r'/tv')
path_mapping_to = os.getenv('PATH_MAPPING_TO', r'/Volumes/TV')
model_location = os.getenv('MODEL_PATH', './models')
monitor = convert_to_bool(os.getenv('MONITOR', False))
transcribe_folders = os.getenv('TRANSCRIBE_FOLDERS', '')
transcribe_or_translate = os.getenv('TRANSCRIBE_OR_TRANSLATE', 'transcribe')
force_detected_language_to = os.getenv('FORCE_DETECTED_LANGUAGE_TO', '').lower()
clear_vram_on_complete = convert_to_bool(os.getenv('CLEAR_VRAM_ON_COMPLETE', True))
compute_type = os.getenv('COMPUTE_TYPE', 'auto')
append = convert_to_bool(os.getenv('APPEND', False))
reload_script_on_change = convert_to_bool(os.getenv('RELOAD_SCRIPT_ON_CHANGE', False))
model_prompt = os.getenv('USE_MODEL_PROMPT', 'False')
custom_model_prompt = os.getenv('CUSTOM_MODEL_PROMPT', '')
lrc_for_audio_files = convert_to_bool(os.getenv('LRC_FOR_AUDIO_FILES', True))
custom_regroup = os.getenv('CUSTOM_REGROUP', 'cm_sl=84_sl=42++++++1')
detect_language_length = os.getenv('DETECT_LANGUAGE_LENGTH', 30)
set_env_variables('subgen.env')
if transcribe_device == "gpu":
transcribe_device = "cuda"
subextension = f".subgen.{whisper_model.split('.')[0]}.{namesublang}.srt"
subextensionSDH = f".subgen.{whisper_model.split('.')[0]}.{namesublang}.sdh.srt"
update_env_variables()
app = FastAPI()
model = None
in_docker = os.path.exists('/.dockerenv')
docker_status = "Docker" if in_docker else "Standalone"
last_print_time = None
#start queue
global task_queue
task_queue = queue.Queue()
def transcription_worker():
while True:
task = task_queue.get()
if 'Bazarr-' in task['path']:
logging.info(f"{task['path']} is being handled handled by ASR.")
else:
gen_subtitles(task['path'], task['transcribe_or_translate'], task['force_language'])
task_queue.task_done()
# show queue
logging.debug(f"There are {task_queue.qsize()} tasks left in the queue.")
for _ in range(concurrent_transcriptions):
threading.Thread(target=transcription_worker, daemon=True).start()
# Define a filter class
class MultiplePatternsFilter(logging.Filter):
def filter(self, record):
# Define the patterns to search for
patterns = [
"Compression ratio threshold is not met",
"Processing segment at",
"Log probability threshold is",
"Reset prompt",
"Attempting to release",
"released on ",
"Attempting to acquire",
"acquired on",
"header parsing failed",
"timescale not set",
"misdetection possible",
"srt was added",
"doesn't have any audio to transcribe",
]
# Return False if any of the patterns are found, True otherwise
return not any(pattern in record.getMessage() for pattern in patterns)
# Configure logging
if debug:
level = logging.DEBUG
logging.basicConfig(stream=sys.stderr, level=level, format="%(asctime)s %(levelname)s: %(message)s")
else:
level = logging.INFO
logging.basicConfig(stream=sys.stderr, level=level)
# Get the root logger
logger = logging.getLogger()
logger.setLevel(level) # Set the logger level
for handler in logger.handlers:
handler.addFilter(MultiplePatternsFilter())
logging.getLogger("multipart").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("asyncio").setLevel(logging.WARNING)
logging.getLogger("watchfiles").setLevel(logging.WARNING)
#This forces a flush to print progress correctly
def progress(seek, total):
sys.stdout.flush()
sys.stderr.flush()
if(docker_status) == 'Docker':
global last_print_time
# Get the current time
current_time = time.time()
# Check if 5 seconds have passed since the last print
if last_print_time is None or (current_time - last_print_time) >= 5:
# Update the last print time
last_print_time = current_time
# Log the message
logging.info("Force Update...")
TIME_OFFSET = 5
def appendLine(result):
if append:
lastSegment = result.segments[-1]
date_time_str = datetime.now().strftime("%d %b %Y - %H:%M:%S")
appended_text = f"Transcribed by whisperAI with faster-whisper ({whisper_model}) on {date_time_str}"
# Create a new segment with the updated information
newSegment = Segment(
start=lastSegment.start + TIME_OFFSET,
end=lastSegment.end + TIME_OFFSET,
text=appended_text,
words=[], # Empty list for words
id=lastSegment.id + 1
)
# Append the new segment to the result's segments
result.segments.append(newSegment)
@app.get("/plex")
@app.get("/webhook")
@app.get("/jellyfin")
@app.get("/asr")
@app.get("/emby")
@app.get("/detect-language")
@app.get("/tautulli")
def handle_get_request(request: Request):
return {"You accessed this request incorrectly via a GET request. See https://github.com/McCloudS/subgen for proper configuration"}
@app.get("/status")
def status():
return {"version" : f"Subgen {subgen_version}, stable-ts {stable_whisper.__version__}, faster-whisper {faster_whisper.__version__} ({docker_status})"}
# Function to generate HTML form with values filled from the environment file
@app.get("/", response_class=HTMLResponse)
def form_get():
# Read the environment variables from the file
env_values = get_env_variables_from_file('subgen.env')
html_content = "<html><head><title>Subgen settings!</title></head><body>"
html_content += '<img src="https://raw.githubusercontent.com/McCloudS/subgen/main/icon.png" alt="Header Image" style="display: block; margin-left: auto; margin-right: auto; width: 10%;">'
html_content += "<html><body><form action=\"/submit\" method=\"post\">"
for var_name, var_info in env_variables.items():
value = os.getenv(var_name, env_values.get(var_name, var_info['default'])) if not isinstance(var_info['default'], bool) else convert_to_bool(os.getenv(var_name, env_values.get(var_name, var_info['default'])))
# Generate the HTML content
html_content += f"<br><div><strong>{var_name}</strong>: {var_info['description']} (<strong>default: {var_info['default']}</strong>)<br>"
if var_name == "TRANSCRIBE_OR_TRANSLATE":
html_content += f"<select name=\"{var_name}\">"
html_content += f"<option value=\"transcribe\"{' selected' if value == 'transcribe' else ''}>Transcribe</option>"
html_content += f"<option value=\"translate\"{' selected' if value == 'translate' else ''}>Translate</option>"
html_content += "</select><br>"
elif isinstance(var_info['default'], bool):
html_content += f"<select name=\"{var_name}\">"
html_content += f"<option value=\"True\"{' selected' if value else ''}>True</option>"
html_content += f"<option value=\"False\"{' selected' if not value else ''}>False</option>"
html_content += "</select><br>"
else:
value = value if value != var_info['default'] else ''
html_content += f"<input type=\"text\" name=\"{var_name}\" value=\"{value}\" placeholder=\"{var_info['default']}\" style=\"width: 200px;\"/></div>"
html_content += "<br><input type=\"submit\" value=\"Save as subgen.env and reload\"/></form></body></html>"
return html_content
@app.post("/submit")
async def form_post(request: Request):
env_path = 'subgen.env'
form_data = await request.form()
# Read the existing content of the file
try:
with open(env_path, "r") as file:
lines = file.readlines()
except FileNotFoundError:
lines = []
# Create a dictionary of existing variables
existing_vars = {}
for line in lines:
if "=" in line:
var, val = line.split("=", 1)
existing_vars[var.strip()] = val.strip()
# Update the file with new values from the form
with open(env_path, "w") as file:
for key, value in form_data.items():
# Normalize the key to uppercase
key = key.upper()
# Convert the value to the correct type (boolean or string)
value = value.strip() if not isinstance(env_variables[key]["default"], bool) else convert_to_bool(value.strip())
# Retrieve the current environment variable value
env_value = os.getenv(key)
if key in os.environ:
del os.environ[key]
# Write to file only if the value is different from the os.getenv and has a value
if env_value != value and (value is not None and value != '') and (env_variables[key]["default"] != value):
# Update the existing variable with the new value
existing_vars[key] = str(value)
# Update the environment variable
os.environ[key] = str(value)
# Write the updated variables to the file
for var, val in existing_vars.items():
file.write(f"{var}={val}\n")
update_env_variables()
return f"Configuration saved to {env_path}, reloading your subgen with your new values!"
@app.post("/tautulli")
def receive_tautulli_webhook(
source: Union[str, None] = Header(None),
event: str = Body(None),
file: str = Body(None),
):
if source == "Tautulli":
logging.debug(f"Tautulli event detected is: {event}")
if((event == "added" and procaddedmedia) or (event == "played" and procmediaonplay)):
fullpath = file
logging.debug("Path of file: " + fullpath)
gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
else:
return {
"message": "This doesn't appear to be a properly configured Tautulli webhook, please review the instructions again!"}
return ""
@app.post("/plex")
def receive_plex_webhook(
user_agent: Union[str] = Header(None),
payload: Union[str] = Form(),
):
try:
plex_json = json.loads(payload)
logging.debug(f"Raw response: {payload}")
if "PlexMediaServer" not in user_agent:
return {"message": "This doesn't appear to be a properly configured Plex webhook, please review the instructions again"}
event = plex_json["event"]
logging.debug(f"Plex event detected is: {event}")
if (event in ["library.new", "media.play"] and (procaddedmedia or procmediaonplay)):
fullpath = get_plex_file_name(plex_json['Metadata']['ratingKey'], plexserver, plextoken)
logging.debug("Path of file: " + fullpath)
gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
refresh_plex_metadata(plex_json['Metadata']['ratingKey'], plexserver, plextoken)
logging.info(f"Metadata for item {plex_json['Metadata']['ratingKey']} refreshed successfully.")
except Exception as e:
logging.error(f"Failed to process Plex webhook: {e}")
return ""
@app.post("/jellyfin")
def receive_jellyfin_webhook(
user_agent: str = Header(None),
NotificationType: str = Body(None),
file: str = Body(None),
ItemId: str = Body(None),
):
if "Jellyfin-Server" in user_agent:
logging.debug(f"Jellyfin event detected is: {NotificationType}")
logging.debug(f"itemid is: {ItemId}")
if (NotificationType == "ItemAdded" and procaddedmedia) or (
NotificationType == "PlaybackStart" and procmediaonplay):
fullpath = get_jellyfin_file_name(ItemId, jellyfinserver, jellyfintoken)
logging.debug(f"Path of file: {fullpath}")
gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
try:
refresh_jellyfin_metadata(ItemId, jellyfinserver, jellyfintoken)
logging.info(f"Metadata for item {ItemId} refreshed successfully.")
except Exception as e:
logging.error(f"Failed to refresh metadata for item {ItemId}: {e}")
else:
return {
"message": "This doesn't appear to be a properly configured Jellyfin webhook, please review the instructions again!"}
return ""
@app.post("/emby")
def receive_emby_webhook(
user_agent: Union[str, None] = Header(None),
data: Union[str, None] = Form(None),
):
logging.debug("Raw response: %s", data)
if "Emby Server" not in user_agent:
return {"This doesn't appear to be a properly configured Emby webhook, please review the instructions again!"}
if not data:
return ""
data_dict = json.loads(data)
fullpath = data_dict['Item']['Path']
event = data_dict['Event']
logging.debug("Emby event detected is: " + event)
if event == "library.new" and procaddedmedia or event == "playback.start" and procmediaonplay:
logging.debug("Path of file: " + fullpath)
gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
return ""
@app.post("/batch")
def batch(
directory: Union[str, None] = Query(default=None),
forceLanguage: Union[str, None] = Query(default=None)
):
transcribe_existing(directory, forceLanguage)
# idea and some code for asr and detect language from https://github.com/ahmetoner/whisper-asr-webservice
@app.post("//asr")
@app.post("/asr")
def asr(
task: Union[str, None] = Query(default="transcribe", enum=["transcribe", "translate"]),
language: Union[str, None] = Query(default=None),
initial_prompt: Union[str, None] = Query(default=None), #not used by Bazarr
audio_file: UploadFile = File(...),
encode: bool = Query(default=True, description="Encode audio first through ffmpeg"), #not used by Bazarr/always False
output: Union[str, None] = Query(default="srt", enum=["txt", "vtt", "srt", "tsv", "json"]),
word_timestamps: bool = Query(default=False, description="Word level timestamps") #not used by Bazarr
):
try:
logging.info(f"Transcribing file from Bazarr/ASR webhook")
result = None
random_name = ''.join(random.choices("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", k=6))
if force_detected_language_to:
language = force_detected_language_to
start_time = time.time()
start_model()
task_id = { 'path': f"Bazarr-asr-{random_name}" }
task_queue.put(task_id)
audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0
if model_prompt:
custom_prompt = greetings_translations.get(language, '') or custom_model_prompt
if custom_regroup:
result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_prompt, regroup=custom_regroup)
else:
result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_prompt)
appendLine(result)
elapsed_time = time.time() - start_time
minutes, seconds = divmod(int(elapsed_time), 60)
logging.info(f"Bazarr transcription is completed, it took {minutes} minutes and {seconds} seconds to complete.")
except Exception as e:
logging.info(f"Error processing or transcribing Bazarr {audio_file.filename}: {e}")
finally:
task_queue.task_done()
delete_model()
if result:
return StreamingResponse(
iter(result.to_srt_vtt(filepath = None, word_level=word_level_highlight)),
media_type="text/plain",
headers={
'Source': 'Transcribed using stable-ts from Subgen!',
})
else:
return
@app.post("//detect-language")
@app.post("/detect-language")
def detect_language(
audio_file: UploadFile = File(...),
#encode: bool = Query(default=True, description="Encode audio first through ffmpeg") # This is always false from Bazarr
):
detected_language = "" # Initialize with an empty string
language_code = "" # Initialize with an empty string
if int(detect_language_length) != 30:
logging.info(f"Detect language is set to detect on the first {detect_language_length} seconds of the audio.")
try:
start_model()
random_name = ''.join(random.choices("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", k=6))
task_id = { 'path': f"Bazarr-detect-language-{random_name}" }
task_queue.put(task_id)
audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0
detected_language = model.transcribe_stable(whisper.pad_or_trim(audio_data, int(detect_language_length) * 16000), input_sr=16000).language
# reverse lookup of language -> code, ex: "english" -> "en", "nynorsk" -> "nn", ...
language_code = get_key_by_value(whisper_languages, detected_language)
except Exception as e:
logging.info(f"Error processing or transcribing Bazarr {audio_file.filename}: {e}")
finally:
task_queue.task_done()
delete_model()
return {"detected_language": detected_language, "language_code": language_code}
def start_model():
global model
if model is None:
logging.debug("Model was purged, need to re-create")
model = stable_whisper.load_faster_whisper(whisper_model, download_root=model_location, device=transcribe_device, cpu_threads=whisper_threads, num_workers=concurrent_transcriptions, compute_type=compute_type)
def delete_model():
if clear_vram_on_complete and task_queue.qsize() == 0:
global model
logging.debug("Queue is empty, clearing/releasing VRAM")
model = None
gc.collect()
def isAudioFileExtension(file_extension):
return file_extension.casefold() in \
[ '.mp3', '.flac', '.wav', '.alac', '.ape', '.ogg', '.wma', '.m4a', '.m4b', '.aac', '.aiff' ]
def write_lrc(result, file_path):
with open(file_path, "w") as file:
for segment in result.segments:
minutes, seconds = divmod(int(segment.start), 60)
fraction = int((segment.start - int(segment.start)) * 100)
file.write(f"[{minutes:02d}:{seconds:02d}.{fraction:02d}] {segment.text}\n")
def gen_subtitles(file_path: str, transcription_type: str, force_language=None) -> None:
"""Generates subtitles for a video file.
Args:
file_path: str - The path to the video file.
transcription_type: str - The type of transcription or translation to perform.
force_language: str - The language to force for transcription or translation. Default is None.
"""
try:
logging.info(f"Added {os.path.basename(file_path)} for transcription.")
logging.info(f"Transcribing file: {os.path.basename(file_path)}")
start_time = time.time()
start_model()
if force_detected_language_to:
force_language = force_detected_language_to
logging.info(f"Forcing language to {force_language}")
if custom_regroup:
result = model.transcribe_stable(file_path, language=force_language, task=transcription_type,
progress_callback=progress, initial_prompt=custom_model_prompt,
regroup=custom_regroup)
else:
result = model.transcribe_stable(file_path, language=force_language, task=transcription_type,
progress_callback=progress, initial_prompt=custom_model_prompt)
appendLine(result)
file_name, file_extension = os.path.splitext(file_path)
if isAudioFileExtension(file_extension) and lrc_for_audio_files:
write_lrc(result, file_name + '.lrc')
else:
result.to_srt_vtt(file_name + subextension, word_level=word_level_highlight)
elapsed_time = time.time() - start_time
minutes, seconds = divmod(int(elapsed_time), 60)
logging.info(
f"Transcription of {os.path.basename(file_path)} is completed, it took {minutes} minutes and {seconds} seconds to complete.")
except Exception as e:
logging.info(f"Error processing or transcribing {file_path}: {e}")
finally:
delete_model()
def gen_subtitles_queue(file_path: str, transcription_type: str, force_language=None) -> None:
global task_queue
if not has_audio(file_path):
logging.debug(f"{file_path} doesn't have any audio to transcribe!")
return
message = None
if has_subtitle_language(file_path, skipifinternalsublang):
message = f"{file_path} already has an internal subtitle we want, skipping generation"
elif os.path.exists(file_path.rsplit('.', 1)[0] + subextension):
message = f"{file_path} already has a subtitle created for this, skipping it"
elif os.path.exists(file_path.rsplit('.', 1)[0] + subextensionSDH):
message = f"{file_path} already has a SDH subtitle created for this, skipping it"
if message:
logging.info(message)
return
task = {
'path': file_path,
'transcribe_or_translate': transcription_type,
'force_language':force_language
}
task_queue.put(task)
def get_file_name_without_extension(file_path):
file_name, file_extension = os.path.splitext(file_path)
return file_name
def has_subtitle_language(video_file, target_language):
try:
with av.open(video_file) as container:
subtitle_stream = next((stream for stream in container.streams if stream.type == 'subtitle' and 'language' in stream.metadata and stream.metadata['language'] == target_language), None)
if subtitle_stream:
logging.debug(f"Subtitles in '{target_language}' language found in the video.")
return True
else:
logging.debug(f"No subtitles in '{target_language}' language found in the video.")
except Exception as e:
logging.info(f"An error occurred: {e}")
return False
def get_plex_file_name(itemid: str, server_ip: str, plex_token: str) -> str:
"""Gets the full path to a file from the Plex server.
Args:
itemid: The ID of the item in the Plex library.
server_ip: The IP address of the Plex server.
plex_token: The Plex token.
Returns:
The full path to the file.
"""
url = f"{server_ip}/library/metadata/{itemid}"
headers = {
"X-Plex-Token": plex_token,
}
response = requests.get(url, headers=headers)
if response.status_code == 200:
root = ET.fromstring(response.content)
fullpath = root.find(".//Part").attrib['file']
return fullpath
else:
raise Exception(f"Error: {response.status_code}")
def refresh_plex_metadata(itemid: str, server_ip: str, plex_token: str) -> None:
"""
Refreshes the metadata of a Plex library item.
Args:
itemid: The ID of the item in the Plex library whose metadata needs to be refreshed.
server_ip: The IP address of the Plex server.
plex_token: The Plex token used for authentication.
Raises:
Exception: If the server does not respond with a successful status code.
"""
# Plex API endpoint to refresh metadata for a specific item
url = f"{server_ip}/library/metadata/{itemid}/refresh"
# Headers to include the Plex token for authentication
headers = {
"X-Plex-Token": plex_token,
}
# Sending the PUT request to refresh metadata
response = requests.put(url, headers=headers)
# Check if the request was successful
if response.status_code == 200:
logging.info("Metadata refresh initiated successfully.")
else:
raise Exception(f"Error refreshing metadata: {response.status_code}")
def refresh_jellyfin_metadata(itemid: str, server_ip: str, jellyfin_token: str) -> None:
"""
Refreshes the metadata of a Jellyfin library item.
Args:
itemid: The ID of the item in the Jellyfin library whose metadata needs to be refreshed.
server_ip: The IP address of the Jellyfin server.
jellyfin_token: The Jellyfin token used for authentication.
Raises:
Exception: If the server does not respond with a successful status code.
"""
# Jellyfin API endpoint to refresh metadata for a specific item
url = f"{server_ip}/Items/{itemid}/Refresh"
# Headers to include the Jellyfin token for authentication
headers = {
"Authorization": f"MediaBrowser Token={jellyfin_token}",
}
# Cheap way to get the admin user id, and save it for later use.
users = json.loads(requests.get(f"{server_ip}/Users", headers=headers).content)
jellyfin_admin = get_jellyfin_admin(users)
response = requests.get(f"{server_ip}/Users/{jellyfin_admin}/Items/{itemid}/Refresh", headers=headers)
# Sending the PUT request to refresh metadata
response = requests.post(url, headers=headers)
# Check if the request was successful
if response.status_code == 204:
logging.info("Metadata refresh queued successfully.")
else:
raise Exception(f"Error refreshing metadata: {response.status_code}")
def get_jellyfin_file_name(item_id: str, jellyfin_url: str, jellyfin_token: str) -> str:
"""Gets the full path to a file from the Jellyfin server.
Args:
jellyfin_url: The URL of the Jellyfin server.
jellyfin_token: The Jellyfin token.
item_id: The ID of the item in the Jellyfin library.
Returns:
The full path to the file.
"""
headers = {
"Authorization": f"MediaBrowser Token={jellyfin_token}",
}
# Cheap way to get the admin user id, and save it for later use.
users = json.loads(requests.get(f"{jellyfin_url}/Users", headers=headers).content)
jellyfin_admin = get_jellyfin_admin(users)
response = requests.get(f"{jellyfin_url}/Users/{jellyfin_admin}/Items/{item_id}", headers=headers)
if response.status_code == 200:
file_name = json.loads(response.content)['Path']
return file_name
else:
raise Exception(f"Error: {response.status_code}")
def get_jellyfin_admin(users):
for user in users:
if user["Policy"]["IsAdministrator"]:
return user["Id"]
raise Exception("Unable to find administrator user in Jellyfin")
def has_audio(file_path):
try:
with av.open(file_path) as container:
return any(stream.type == 'audio' for stream in container.streams)
except (av.AVError, UnicodeDecodeError):
return False
def path_mapping(fullpath):
if use_path_mapping:
logging.debug("Updated path: " + fullpath.replace(path_mapping_from, path_mapping_to))
return fullpath.replace(path_mapping_from, path_mapping_to)
return fullpath
if monitor:
# Define a handler class that will process new files
class NewFileHandler(FileSystemEventHandler):
def create_subtitle(self, event):
# Only process if it's a file
if not event.is_directory:
file_path = event.src_path
if has_audio(file_path):
# Call the gen_subtitles function
logging.info(f"File: {path_mapping(file_path)} was added")
gen_subtitles_queue(path_mapping(file_path), transcribe_or_translate)
def on_created(self, event):
self.create_subtitle(event)
def on_modified(self, event):
self.create_subtitle(event)
def transcribe_existing(transcribe_folders, forceLanguage=None):
transcribe_folders = transcribe_folders.split("|")
logging.info("Starting to search folders to see if we need to create subtitles.")
logging.debug("The folders are:")
for path in transcribe_folders:
logging.debug(path)
for root, dirs, files in os.walk(path):
for file in files:
file_path = os.path.join(root, file)
gen_subtitles_queue(path_mapping(file_path), transcribe_or_translate, forceLanguage)
# if the path specified was actually a single file and not a folder, process it
if os.path.isfile(path):
if has_audio(path):
gen_subtitles_queue(path_mapping(path), transcribe_or_translate, forceLanguage)
# Set up the observer to watch for new files
if monitor:
observer = Observer()
for path in transcribe_folders:
if os.path.isdir(path):
handler = NewFileHandler()
observer.schedule(handler, path, recursive=True)
observer.start()
logging.info("Finished searching and queueing files for transcription. Now watching for new files.")
whisper_languages = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"he": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}
greetings_translations = {
"en": "Hello, welcome to my lecture.",
"zh": "你好,欢迎来到我的讲座。",
"de": "Hallo, willkommen zu meiner Vorlesung.",
"es": "Hola, bienvenido a mi conferencia.",
"ru": "Привет, добро пожаловать на мою лекцию.",
"ko": "안녕하세요, 제 강의에 오신 것을 환영합니다.",
"fr": "Bonjour, bienvenue à mon cours.",
"ja": "こんにちは、私の講義へようこそ。",
"pt": "Olá, bem-vindo à minha palestra.",
"tr": "Merhaba, dersime hoş geldiniz.",
"pl": "Cześć, witaj na mojej wykładzie.",
"ca": "Hola, benvingut a la meva conferència.",
"nl": "Hallo, welkom bij mijn lezing.",
"ar": "مرحبًا، مرحبًا بك في محاضرتي.",
"sv": "Hej, välkommen till min föreläsning.",
"it": "Ciao, benvenuto alla mia conferenza.",
"id": "Halo, selamat datang di kuliah saya.",
"hi": "नमस्ते, मेरे व्याख्यान में आपका स्वागत है।",
"fi": "Hei, tervetuloa luentooni.",
"vi": "Xin chào, chào mừng bạn đến với bài giảng của tôi.",
"he": "שלום, ברוך הבא להרצאתי.",
"uk": "Привіт, ласкаво просимо на мою лекцію.",
"el": "Γεια σας, καλώς ήλθατε στη διάλεξή μου.",
"ms": "Halo, selamat datang ke kuliah saya.",
"cs": "Ahoj, vítejte na mé přednášce.",
"ro": "Bună, bun venit la cursul meu.",
"da": "Hej, velkommen til min forelæsning.",
"hu": "Helló, üdvözöllek az előadásomon.",
"ta": "வணக்கம், என் பாடத்திற்கு வரவேற்கிறேன்.",
"no": "Hei, velkommen til foredraget mitt.",
"th": "สวัสดีครับ ยินดีต้อนรับสู่การบรรยายของฉัน",
"ur": "ہیلو، میری لیکچر میں خوش آمدید۔",
"hr": "Pozdrav, dobrodošli na moje predavanje.",
"bg": "Здравейте, добре дошли на моята лекция.",
"lt": "Sveiki, sveiki atvykę į mano paskaitą.",
"la": "Salve, gratias vobis pro eo quod meam lectionem excipitis.",
"mi": "Kia ora, nau mai ki aku rorohiko.",
"ml": "ഹലോ, എന്റെ പാഠത്തിലേക്ക് സ്വാഗതം.",
"cy": "Helo, croeso i fy narlith.",
"sk": "Ahoj, vitajte na mojej prednáške.",
"te": "హలో, నా పాఠానికి స్వాగతం.",
"fa": "سلام، خوش آمدید به سخنرانی من.",
"lv": "Sveiki, laipni lūdzam uz manu lekciju.",
"bn": "হ্যালো, আমার লেকচারে আপনাকে স্বাগতম।",
"sr": "Здраво, добродошли на моје предавање.",
"az": "Salam, mənim dərsimə xoş gəlmisiniz.",
"sl": "Pozdravljeni, dobrodošli na moje predavanje.",
"kn": "ಹಲೋ, ನನ್ನ ಭಾಷಣಕ್ಕೆ ಸುಸ್ವಾಗತ.",
"et": "Tere, tere tulemast minu loengusse.",
"mk": "Здраво, добредојдовте на мојата предавање.",
"br": "Demat, kroget e oa d'an daol-labour.",
"eu": "Kaixo, ongi etorri nire hitzaldi.",
"is": "Halló, velkomin á fyrirlestur minn.",
"hy": "Բարեւ, ողջույն եկավ իմ դասընթացի.",
"ne": "नमस्ते, मेरो प्रवचनमा स्वागत छ।",
"mn": "Сайн байна уу, миний хичээлд тавтай морилно уу.",
"bs": "Zdravo, dobrodošli na moje predavanje.",
"kk": "Сәлеметсіз бе, оқу сабағыма қош келдіңіз.",
"sq": "Përshëndetje, mirësevini në ligjëratën time.",
"sw": "Habari, karibu kwenye hotuba yangu.",
"gl": "Ola, benvido á miña conferencia.",
"mr": "नमस्कार, माझ्या व्याख्यानात आपले स्वागत आहे.",
"pa": "ਸਤ ਸ੍ਰੀ ਅਕਾਲ, ਮੇਰੀ ਵਾਰਤਾ ਵਿੱਚ ਤੁਹਾਨੂੰ ਜੀ ਆਇਆ ਨੂੰ ਸੁਆਗਤ ਹੈ।",
"si": "හෙලෝ, මගේ වාර්තාවට ඔබේ ස්වාදයට සාමාජිකත්වයක්.",
"km": "សួស្តី, សូមស្វាគមន៍មកកាន់អារម្មណ៍របស់ខ្ញុំ។",
"sn": "Mhoro, wakaribisha kumusoro wangu.",
"yo": "Bawo, ku isoro si wa orin mi.",
"so": "Soo dhawoow, soo dhawoow marka laga hadlo kulambanayaashaaga.",
"af": "Hallo, welkom by my lesing.",
"oc": "Bonjorn, benvenguda a ma conferéncia.",
"ka": "გამარჯობა, მესწარმეტყველება ჩემი ლექციაზე.",
"be": "Прывітанне, запрашаем на маю лекцыю.",
"tg": "Салом, ба лаҳзаи мавзӯъати ман хуш омадед.",
"sd": "هيلو، ميري ليڪڪي ۾ خوش آيو.",
"gu": "નમસ્તે, મારી પાઠશાળામાં આપનું સ્વાગત છે.",
"am": "ሰላም፣ ለአንድነት የተመረጠን ትምህርት በመሆን እናመሰግናለን።",
"yi": "העלאָ, ווילקומן צו מיין לעקטשער.",
"lo": "ສະບາຍດີ, ຍິນດີນາງຂອງຂ້ອຍໄດ້ຍິນດີ.",
"uz": "Salom, darsimda xush kelibsiz.",
"fo": "Halló, vælkomin til mína fyrilestrar.",
"ht": "Bonjou, byenveni nan leson mwen.",
"ps": "سلام، مې لومړۍ کې خوش آمدید.",
"tk": "Salam, dersimiňe hoş geldiňiz.",
"nn": "Hei, velkomen til førelesinga mi.",
"mt": "Hello, merħba għall-lezzjoni tiegħi.",
"sa": "नमस्ते, मम उपन्यासे स्वागतं.",
"lb": "Hallo, wëllkomm zu menger Lektioun.",
"my": "မင်္ဂလာပါ၊ ကျေးဇူးတင်သည့်ကိစ္စသည်။",
"bo": "བཀྲ་ཤིས་བདེ་ལེགས་འབད་བཅོས། ངའི་འཛིན་གྱི་སློབ་མའི་མིང་གི་འཕྲོད།",
"tl": "Kamusta, maligayang pagdating sa aking leksyon.",
"mg": "Manao ahoana, tonga soa sy tonga soa eto amin'ny lesona.",
"as": "নমস্কাৰ, মোৰ পাঠলৈ আপোনাক স্বাগতম।",
"tt": "Сәлам, лекциямга рәхмәт киләсез.",
"haw": "Aloha, welina me ke kipa ana i ko'u ha'i 'ōlelo.",
"ln": "Mbote, tango na zongisa mwa kilela yandi.",
"ha": "Sannu, ka ci gaba da tattalin arziki na.",
"ba": "Сәләм, лекцияғыма ҡуш тиңләгәнһүҙ.",
"jw": "Halo, sugeng datang marang kulawargané.",
"su": "Wilujeng, hatur nuhun ka lékturing abdi.",
}
env_variables = {
"TRANSCRIBE_DEVICE": {"description": "Can transcribe via gpu (Cuda only) or cpu. Takes option of 'cpu', 'gpu', 'cuda'.", "default": "cpu", "value": ""},
"WHISPER_MODEL": {"description": "Can be: 'tiny', 'tiny.en', 'base', 'base.en', 'small', 'small.en', 'medium', 'medium.en', 'large-v1','large-v2', 'large-v3', 'large', 'distil-large-v2', 'distil-medium.en', 'distil-small.en'", "default": "medium", "value": ""},
"CONCURRENT_TRANSCRIPTIONS": {"description": "Number of files it will transcribe in parallel", "default": "2", "value": ""},
"WHISPER_THREADS": {"description": "Number of threads to use during computation", "default": "4", "value": ""},
"MODEL_PATH": {"description": "This is where the WHISPER_MODEL will be stored. This defaults to placing it where you execute the script in the folder 'models'", "default": "./models", "value": ""},
"PROCADDEDMEDIA": {"description": "Will gen subtitles for all media added regardless of existing external/embedded subtitles (based off of SKIPIFINTERNALSUBLANG)", "default": True, "value": ""},
"PROCMEDIAONPLAY": {"description": "Will gen subtitles for all played media regardless of existing external/embedded subtitles (based off of SKIPIFINTERNALSUBLANG)", "default": True, "value": ""},
"NAMESUBLANG": {"description": "Allows you to pick what it will name the subtitle. Instead of using EN, I'm using AA, so it doesn't mix with existing external EN subs, and AA will populate higher on the list in Plex.", "default": "aa", "value": ""},
"SKIPIFINTERNALSUBLANG": {"description": "Will not generate a subtitle if the file has an internal sub matching the 3 letter code of this variable", "default": "eng", "value": ""},
"WORD_LEVEL_HIGHLIGHT": {"description": "Highlights each word as it's spoken in the subtitle.", "default": False, "value": ""},
"PLEXSERVER": {"description": "This needs to be set to your local plex server address/port", "default": "http://plex:32400", "value": ""},
"PLEXTOKEN": {"description": "This needs to be set to your plex token", "default": "token here", "value": ""},
"JELLYFINSERVER": {"description": "Set to your Jellyfin server address/port", "default": "http://jellyfin:8096", "value": ""},
"JELLYFINTOKEN": {"description": "Generate a token inside the Jellyfin interface", "default": "token here", "value": ""},
"WEBHOOKPORT": {"description": "Change this if you need a different port for your webhook", "default": "9000", "value": ""},
"USE_PATH_MAPPING": {"description": "Similar to sonarr and radarr path mapping, this will attempt to replace paths on file systems that don't have identical paths. Currently only support for one path replacement.", "default": False, "value": ""},
"PATH_MAPPING_FROM": {"description": "This is the path of my media relative to my Plex server", "default": "/tv", "value": ""},
"PATH_MAPPING_TO": {"description": "This is the path of that same folder relative to my Mac Mini that will run the script", "default": "/Volumes/TV", "value": ""},
"TRANSCRIBE_FOLDERS": {"description": "Takes a pipe '|' separated list and iterates through and adds those files to be queued for subtitle generation if they don't have internal subtitles", "default": "", "value": ""},
"TRANSCRIBE_OR_TRANSLATE": {"description": "Takes either 'transcribe' or 'translate'. Transcribe will transcribe the audio in the same language as the input. Translate will transcribe and translate into English.", "default": "transcribe", "value": ""},
"COMPUTE_TYPE": {"description": "Set compute-type using the following information: https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md", "default": "auto", "value": ""},
"DEBUG": {"description": "Provides some debug data that can be helpful to troubleshoot path mapping and other issues. If set to true, any modifications to the script will auto-reload it (if it isn't actively transcoding). Useful to make small tweaks without re-downloading the whole file.", "default": True, "value": ""},
"FORCE_DETECTED_LANGUAGE_TO": {"description": "This is to force the model to a language instead of the detected one, takes a 2 letter language code.", "default": "", "value": ""},
"CLEAR_VRAM_ON_COMPLETE": {"description": "This will delete the model and do garbage collection when queue is empty. Good if you need to use the VRAM for something else.", "default": True, "value": ""},
"UPDATE": {"description": "Will pull latest subgen.py from the repository if True. False will use the original subgen.py built into the Docker image. Standalone users can use this with launcher.py to get updates.","default": False,"value": ""},
"APPEND": {"description": "Will add the following at the end of a subtitle: 'Transcribed by whisperAI with faster-whisper ({whisper_model}) on {datetime.now()}'","default": False,"value": ""},
"MONITOR": {"description": "Will monitor TRANSCRIBE_FOLDERS for real-time changes to see if we need to generate subtitles","default": False,"value": ""},
"USE_MODEL_PROMPT": {"description": "When set to True, will use the default prompt stored in greetings_translations 'Hello, welcome to my lecture.' to try and force the use of punctuation in transcriptions that don't.","default": False,"value": ""},
"CUSTOM_MODEL_PROMPT": {"description": "If USE_MODEL_PROMPT is True, you can override the default prompt (See: [prompt engineering in whisper](https://medium.com/axinc-ai/prompt-engineering-in-whisper-6bb18003562d%29) for great examples).","default": "","value": ""},
"LRC_FOR_AUDIO_FILES": {"description": "Will generate LRC (instead of SRT) files for filetypes: '.mp3', '.flac', '.wav', '.alac', '.ape', '.ogg', '.wma', '.m4a', '.m4b', '.aac', '.aiff'","default": True,"value": ""},
"CUSTOM_REGROUP": {"description": "Attempts to regroup some of the segments to make a cleaner looking subtitle. See #68 for discussion. Set to blank if you want to use Stable-TS default regroups algorithm of cm_sp=,* /,_sg=.5_mg=.3+3_sp=.* /。/?/?","default": "cm_sl=84_sl=42++++++1","value": ""},
"DETECT_LANGUAGE_LENGTH": {"description": "Detect language on the first x seconds of the audio.","default": 30,"value": ""},
}
if __name__ == "__main__":
import uvicorn
update_env_variables()
logging.info(f"Subgen v{subgen_version}")
logging.info("Starting Subgen with listening webhooks!")
logging.info(f"Transcriptions are limited to running {str(concurrent_transcriptions)} at a time")
logging.info(f"Running {str(whisper_threads)} threads per transcription")
logging.info(f"Using {transcribe_device} to encode")
logging.info(f"Using faster-whisper")
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
if transcribe_folders:
transcribe_existing(transcribe_folders)
uvicorn.run("__main__:app", host="0.0.0.0", port=int(webhookport), reload=reload_script_on_change, use_colors=True)
|