File size: 49,116 Bytes
5a7000a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305232b
 
 
 
5a7000a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
subgen_version = '2024.5.15.78'

from datetime import datetime
import subprocess
import os
import json
import xml.etree.ElementTree as ET
import threading
import sys
import time
import queue
import logging
import gc
import io
import random
from typing import BinaryIO, Union, Any
from fastapi import FastAPI, File, UploadFile, Query, Header, Body, Form, Request
from fastapi.responses import StreamingResponse, RedirectResponse, HTMLResponse
import numpy as np
import stable_whisper
from stable_whisper import Segment
import requests
import av
import ffmpeg
import whisper
import re
from watchdog.observers.polling import PollingObserver as Observer
from watchdog.events import FileSystemEventHandler
import faster_whisper

def get_key_by_value(d, value):
    reverse_dict = {v: k for k, v in d.items()}
    return reverse_dict.get(value)

def convert_to_bool(in_bool):
    # Convert the input to string and lower case, then check against true values
    return str(in_bool).lower() in ('true', 'on', '1', 'y', 'yes')

# Function to read environment variables from a file and return them as a dictionary
def get_env_variables_from_file(filename):
    env_vars = {}
    try:
        with open(filename, 'r') as file:
            for line in file:
                if line.strip() and not line.startswith('#'):
                    key, value = line.strip().split('=', 1)
                    env_vars[key.strip()] = value.strip()
    except FileNotFoundError:
        print(f"File {filename} not found. Using default values.")
    return env_vars
    
def set_env_variables(filename):
    try:
        with open(filename, 'r') as file:
            for line in file:
                if line.strip() and not line.startswith('#'):
                    key, value = line.strip().split('=', 1)
                    os.environ[key.strip()] = value.strip().strip('\"').strip("'")
    except FileNotFoundError:
        print(f"File {filename} not found. Environment variables not set.")

def update_env_variables():
    global plextoken, plexserver, jellyfintoken, jellyfinserver, whisper_model, whisper_threads
    global concurrent_transcriptions, transcribe_device, procaddedmedia, procmediaonplay
    global namesublang, skipifinternalsublang, webhookport, word_level_highlight, debug
    global use_path_mapping, path_mapping_from, path_mapping_to, model_location, monitor
    global transcribe_folders, transcribe_or_translate, force_detected_language_to
    global clear_vram_on_complete, compute_type, append, reload_script_on_change
    global model_prompt, custom_model_prompt, lrc_for_audio_files, custom_regroup
    global subextension, subextensionSDH, detect_language_length
    
    plextoken = os.getenv('PLEXTOKEN', 'token here')
    plexserver = os.getenv('PLEXSERVER', 'http://192.168.1.111:32400')
    jellyfintoken = os.getenv('JELLYFINTOKEN', 'token here')
    jellyfinserver = os.getenv('JELLYFINSERVER', 'http://192.168.1.111:8096')
    whisper_model = os.getenv('WHISPER_MODEL', 'large-v3')
    whisper_threads = int(os.getenv('WHISPER_THREADS', 12))
    concurrent_transcriptions = int(os.getenv('CONCURRENT_TRANSCRIPTIONS', 4))
    transcribe_device = os.getenv('TRANSCRIBE_DEVICE', 'cuda')
    procaddedmedia = convert_to_bool(os.getenv('PROCADDEDMEDIA', True))
    procmediaonplay = convert_to_bool(os.getenv('PROCMEDIAONPLAY', True))
    namesublang = os.getenv('NAMESUBLANG', 'aa')
    skipifinternalsublang = os.getenv('SKIPIFINTERNALSUBLANG', 'eng')
    webhookport = int(os.getenv('WEBHOOKPORT', 9000))
    word_level_highlight = convert_to_bool(os.getenv('WORD_LEVEL_HIGHLIGHT', False))
    debug = convert_to_bool(os.getenv('DEBUG', True))
    use_path_mapping = convert_to_bool(os.getenv('USE_PATH_MAPPING', False))
    path_mapping_from = os.getenv('PATH_MAPPING_FROM', r'/tv')
    path_mapping_to = os.getenv('PATH_MAPPING_TO', r'/Volumes/TV')
    model_location = os.getenv('MODEL_PATH', './models')
    monitor = convert_to_bool(os.getenv('MONITOR', False))
    transcribe_folders = os.getenv('TRANSCRIBE_FOLDERS', '')
    transcribe_or_translate = os.getenv('TRANSCRIBE_OR_TRANSLATE', 'transcribe')
    force_detected_language_to = os.getenv('FORCE_DETECTED_LANGUAGE_TO', '').lower()
    clear_vram_on_complete = convert_to_bool(os.getenv('CLEAR_VRAM_ON_COMPLETE', True))
    compute_type = os.getenv('COMPUTE_TYPE', 'auto')
    append = convert_to_bool(os.getenv('APPEND', False))
    reload_script_on_change = convert_to_bool(os.getenv('RELOAD_SCRIPT_ON_CHANGE', False))
    model_prompt = os.getenv('USE_MODEL_PROMPT', 'False')
    custom_model_prompt = os.getenv('CUSTOM_MODEL_PROMPT', '')
    lrc_for_audio_files = convert_to_bool(os.getenv('LRC_FOR_AUDIO_FILES', True))
    custom_regroup = os.getenv('CUSTOM_REGROUP', 'cm_sl=84_sl=42++++++1')
    detect_language_length = os.getenv('DETECT_LANGUAGE_LENGTH', 30)

    set_env_variables('subgen.env')
    
    if transcribe_device == "gpu":
        transcribe_device = "cuda"
        
    subextension =  f".subgen.{whisper_model.split('.')[0]}.{namesublang}.srt"
    subextensionSDH =  f".subgen.{whisper_model.split('.')[0]}.{namesublang}.sdh.srt"

update_env_variables()

app = FastAPI()
model = None

in_docker = os.path.exists('/.dockerenv')
docker_status = "Docker" if in_docker else "Standalone"
last_print_time = None

#start queue
global task_queue
task_queue = queue.Queue()

def transcription_worker():
    while True:
        task = task_queue.get()
        if 'Bazarr-' in task['path']:
            logging.info(f"{task['path']} is being handled handled by ASR.")
        else:
            gen_subtitles(task['path'], task['transcribe_or_translate'], task['force_language'])
            task_queue.task_done()
        # show queue
        logging.debug(f"There are {task_queue.qsize()} tasks left in the queue.")

for _ in range(concurrent_transcriptions):
    threading.Thread(target=transcription_worker, daemon=True).start()

# Define a filter class
class MultiplePatternsFilter(logging.Filter):
    def filter(self, record):
        # Define the patterns to search for
        patterns = [
            "Compression ratio threshold is not met",
            "Processing segment at",
            "Log probability threshold is",
            "Reset prompt",
            "Attempting to release",
            "released on ",
            "Attempting to acquire",
            "acquired on",
            "header parsing failed",
            "timescale not set",
            "misdetection possible",
            "srt was added",
            "doesn't have any audio to transcribe",
        ]
        # Return False if any of the patterns are found, True otherwise
        return not any(pattern in record.getMessage() for pattern in patterns)

# Configure logging
if debug:
    level = logging.DEBUG
    logging.basicConfig(stream=sys.stderr, level=level, format="%(asctime)s %(levelname)s: %(message)s")
else:
    level = logging.INFO
    logging.basicConfig(stream=sys.stderr, level=level)

# Get the root logger
logger = logging.getLogger()
logger.setLevel(level)  # Set the logger level

for handler in logger.handlers:
    handler.addFilter(MultiplePatternsFilter())

logging.getLogger("multipart").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("asyncio").setLevel(logging.WARNING)
logging.getLogger("watchfiles").setLevel(logging.WARNING)

#This forces a flush to print progress correctly
def progress(seek, total):
    sys.stdout.flush()
    sys.stderr.flush()
    if(docker_status) == 'Docker':
        global last_print_time
        # Get the current time
        current_time = time.time()
    
        # Check if 5 seconds have passed since the last print
        if last_print_time is None or (current_time - last_print_time) >= 5:
            # Update the last print time
            last_print_time = current_time
            # Log the message
            logging.info("Force Update...")

TIME_OFFSET = 5

def appendLine(result):
    if append:
        lastSegment = result.segments[-1]
        date_time_str = datetime.now().strftime("%d %b %Y - %H:%M:%S")
        appended_text = f"Transcribed by whisperAI with faster-whisper ({whisper_model}) on {date_time_str}"
        
        # Create a new segment with the updated information
        newSegment = Segment(
            start=lastSegment.start + TIME_OFFSET,
            end=lastSegment.end + TIME_OFFSET,
            text=appended_text,
            words=[],  # Empty list for words
            id=lastSegment.id + 1
        )
        
        # Append the new segment to the result's segments
        result.segments.append(newSegment)

@app.get("/plex")
@app.get("/webhook")
@app.get("/jellyfin")
@app.get("/asr")
@app.get("/emby")
@app.get("/detect-language")
@app.get("/tautulli")
def handle_get_request(request: Request):
    return {"You accessed this request incorrectly via a GET request.  See https://github.com/McCloudS/subgen for proper configuration"}

@app.get("/status")
def status():
    return {"version" : f"Subgen {subgen_version}, stable-ts {stable_whisper.__version__}, faster-whisper {faster_whisper.__version__} ({docker_status})"}

# Function to generate HTML form with values filled from the environment file
@app.get("/", response_class=HTMLResponse)
def form_get():
    # Read the environment variables from the file
    env_values = get_env_variables_from_file('subgen.env')
    html_content = "<html><head><title>Subgen settings!</title></head><body>"
    html_content += '<img src="https://raw.githubusercontent.com/McCloudS/subgen/main/icon.png" alt="Header Image" style="display: block; margin-left: auto; margin-right: auto; width: 10%;">'
    html_content += "<html><body><form action=\"/submit\" method=\"post\">"
    
    for var_name, var_info in env_variables.items():
        value = os.getenv(var_name, env_values.get(var_name, var_info['default'])) if not isinstance(var_info['default'], bool) else convert_to_bool(os.getenv(var_name, env_values.get(var_name, var_info['default'])))
        # Generate the HTML content
        html_content += f"<br><div><strong>{var_name}</strong>: {var_info['description']} (<strong>default: {var_info['default']}</strong>)<br>"
        if var_name == "TRANSCRIBE_OR_TRANSLATE":
            html_content += f"<select name=\"{var_name}\">"
            html_content += f"<option value=\"transcribe\"{' selected' if value == 'transcribe' else ''}>Transcribe</option>"
            html_content += f"<option value=\"translate\"{' selected' if value == 'translate' else ''}>Translate</option>"
            html_content += "</select><br>"
        elif isinstance(var_info['default'], bool):
            html_content += f"<select name=\"{var_name}\">"
            html_content += f"<option value=\"True\"{' selected' if value else ''}>True</option>"
            html_content += f"<option value=\"False\"{' selected' if not value else ''}>False</option>"
            html_content += "</select><br>"
        else:
            value = value if value != var_info['default'] else ''
            html_content += f"<input type=\"text\" name=\"{var_name}\" value=\"{value}\" placeholder=\"{var_info['default']}\" style=\"width: 200px;\"/></div>"

    html_content += "<br><input type=\"submit\" value=\"Save as subgen.env and reload\"/></form></body></html>"
    return html_content


@app.post("/submit")
async def form_post(request: Request):
    env_path = 'subgen.env'
    form_data = await request.form()
    # Read the existing content of the file
    try:
        with open(env_path, "r") as file:
            lines = file.readlines()
    except FileNotFoundError:
        lines = []

    # Create a dictionary of existing variables
    existing_vars = {}
    for line in lines:
        if "=" in line:
            var, val = line.split("=", 1)
            existing_vars[var.strip()] = val.strip()

    # Update the file with new values from the form
    with open(env_path, "w") as file:
        for key, value in form_data.items():
            # Normalize the key to uppercase
            key = key.upper()
            # Convert the value to the correct type (boolean or string)
            value = value.strip() if not isinstance(env_variables[key]["default"], bool) else convert_to_bool(value.strip())
            # Retrieve the current environment variable value
            env_value = os.getenv(key)
            if key in os.environ:
                del os.environ[key]
            # Write to file only if the value is different from the os.getenv and has a value
            if env_value != value and (value is not None and value != '') and (env_variables[key]["default"] != value):
                # Update the existing variable with the new value
                existing_vars[key] = str(value)
                # Update the environment variable
                os.environ[key] = str(value)

        # Write the updated variables to the file
        for var, val in existing_vars.items():
            file.write(f"{var}={val}\n")

    update_env_variables()
    return f"Configuration saved to {env_path}, reloading your subgen with your new values!"


@app.post("/tautulli")
def receive_tautulli_webhook(
        source: Union[str, None] = Header(None),
        event: str = Body(None),
        file: str = Body(None),
):
    if source == "Tautulli":
        logging.debug(f"Tautulli event detected is: {event}")
        if((event == "added" and procaddedmedia) or (event == "played" and procmediaonplay)):
            fullpath = file
            logging.debug("Path of file: " + fullpath)

            gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
    else:
        return {
            "message": "This doesn't appear to be a properly configured Tautulli webhook, please review the instructions again!"}

    return ""


@app.post("/plex")
def receive_plex_webhook(
        user_agent: Union[str] = Header(None),
        payload: Union[str] = Form(),
):
    try:
        plex_json = json.loads(payload)
        logging.debug(f"Raw response: {payload}")

        if "PlexMediaServer" not in user_agent:
            return {"message": "This doesn't appear to be a properly configured Plex webhook, please review the instructions again"}

        event = plex_json["event"]
        logging.debug(f"Plex event detected is: {event}")

        if (event in ["library.new", "media.play"] and (procaddedmedia or procmediaonplay)):
            fullpath = get_plex_file_name(plex_json['Metadata']['ratingKey'], plexserver, plextoken)
            logging.debug("Path of file: " + fullpath)

            gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
            refresh_plex_metadata(plex_json['Metadata']['ratingKey'], plexserver, plextoken)
            logging.info(f"Metadata for item {plex_json['Metadata']['ratingKey']} refreshed successfully.")
    except Exception as e:
        logging.error(f"Failed to process Plex webhook: {e}")

    return ""


@app.post("/jellyfin")
def receive_jellyfin_webhook(
        user_agent: str = Header(None),
        NotificationType: str = Body(None),
        file: str = Body(None),
        ItemId: str = Body(None),
):
    if "Jellyfin-Server" in user_agent:
        logging.debug(f"Jellyfin event detected is: {NotificationType}")
        logging.debug(f"itemid is: {ItemId}")

        if (NotificationType == "ItemAdded" and procaddedmedia) or (
                NotificationType == "PlaybackStart" and procmediaonplay):
            fullpath = get_jellyfin_file_name(ItemId, jellyfinserver, jellyfintoken)
            logging.debug(f"Path of file: {fullpath}")

            gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)
            try:
                refresh_jellyfin_metadata(ItemId, jellyfinserver, jellyfintoken)
                logging.info(f"Metadata for item {ItemId} refreshed successfully.")
            except Exception as e:
                logging.error(f"Failed to refresh metadata for item {ItemId}: {e}")
    else:
        return {
            "message": "This doesn't appear to be a properly configured Jellyfin webhook, please review the instructions again!"}

    return ""


@app.post("/emby")
def receive_emby_webhook(
        user_agent: Union[str, None] = Header(None),
        data: Union[str, None] = Form(None),
):
    logging.debug("Raw response: %s", data)

    if "Emby Server" not in user_agent:
        return {"This doesn't appear to be a properly configured Emby webhook, please review the instructions again!"}

    if not data:
        return ""

    data_dict = json.loads(data)
    fullpath = data_dict['Item']['Path']
    event = data_dict['Event']
    logging.debug("Emby event detected is: " + event)

    if event == "library.new" and procaddedmedia or event == "playback.start" and procmediaonplay:
        logging.debug("Path of file: " + fullpath)
        gen_subtitles_queue(path_mapping(fullpath), transcribe_or_translate)

    return ""
    
@app.post("/batch")
def batch(
        directory: Union[str, None] = Query(default=None),
        forceLanguage: Union[str, None] = Query(default=None)
):
    transcribe_existing(directory, forceLanguage)
    
# idea and some code for asr and detect language from https://github.com/ahmetoner/whisper-asr-webservice
@app.post("//asr")
@app.post("/asr")
def asr(
        task: Union[str, None] = Query(default="transcribe", enum=["transcribe", "translate"]),
        language: Union[str, None] = Query(default=None),
        initial_prompt: Union[str, None] = Query(default=None),  #not used by Bazarr
        audio_file: UploadFile = File(...),
        encode: bool = Query(default=True, description="Encode audio first through ffmpeg"),  #not used by Bazarr/always False
        output: Union[str, None] = Query(default="srt", enum=["txt", "vtt", "srt", "tsv", "json"]),
        word_timestamps: bool = Query(default=False, description="Word level timestamps") #not used by Bazarr
):
    try:
        logging.info(f"Transcribing file from Bazarr/ASR webhook")
        result = None
        random_name = ''.join(random.choices("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", k=6))

        if force_detected_language_to:
            language = force_detected_language_to

        start_time = time.time()
        start_model()
        
        task_id = { 'path': f"Bazarr-asr-{random_name}" }        
        task_queue.put(task_id)
        
        audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0
        if model_prompt:
            custom_prompt = greetings_translations.get(language, '') or custom_model_prompt
        if custom_regroup:
            result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_prompt, regroup=custom_regroup)
        else:
            result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_prompt)
        appendLine(result)
        elapsed_time = time.time() - start_time
        minutes, seconds = divmod(int(elapsed_time), 60)
        logging.info(f"Bazarr transcription is completed, it took {minutes} minutes and {seconds} seconds to complete.")
    except Exception as e:
        logging.info(f"Error processing or transcribing Bazarr {audio_file.filename}: {e}")
    finally:
        task_queue.task_done()
        delete_model()
    if result:
        return StreamingResponse(
            iter(result.to_srt_vtt(filepath = None, word_level=word_level_highlight)),
            media_type="text/plain",
            headers={
                'Source': 'Transcribed using stable-ts from Subgen!',
            })
    else:
        return

@app.post("//detect-language")
@app.post("/detect-language")
def detect_language(
        audio_file: UploadFile = File(...),
        #encode: bool = Query(default=True, description="Encode audio first through ffmpeg") # This is always false from Bazarr
):    
    detected_language = ""  # Initialize with an empty string
    language_code = ""  # Initialize with an empty string
    if int(detect_language_length) != 30:
        logging.info(f"Detect language is set to detect on the first {detect_language_length} seconds of the audio.")
    try:
        start_model()
        random_name = ''.join(random.choices("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", k=6))
        
        task_id = { 'path': f"Bazarr-detect-language-{random_name}" }        
        task_queue.put(task_id)
        
        audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0
        detected_language = model.transcribe_stable(whisper.pad_or_trim(audio_data, int(detect_language_length) * 16000), input_sr=16000).language
        # reverse lookup of language -> code, ex: "english" -> "en", "nynorsk" -> "nn", ...
        language_code = get_key_by_value(whisper_languages, detected_language)

    except Exception as e:
        logging.info(f"Error processing or transcribing Bazarr {audio_file.filename}: {e}")
        
    finally:
        task_queue.task_done()
        delete_model()

        return {"detected_language": detected_language, "language_code": language_code}

def start_model():
    global model
    if model is None:
        logging.debug("Model was purged, need to re-create")
        model = stable_whisper.load_faster_whisper(whisper_model, download_root=model_location, device=transcribe_device, cpu_threads=whisper_threads, num_workers=concurrent_transcriptions, compute_type=compute_type)

def delete_model():
    if clear_vram_on_complete and task_queue.qsize() == 0:
        global model
        logging.debug("Queue is empty, clearing/releasing VRAM")
        model = None
        gc.collect()

def isAudioFileExtension(file_extension):
    return file_extension.casefold() in \
        [ '.mp3', '.flac', '.wav', '.alac', '.ape', '.ogg', '.wma', '.m4a', '.m4b', '.aac', '.aiff' ]

def write_lrc(result, file_path):
    with open(file_path, "w") as file:
        for segment in result.segments:
            minutes, seconds = divmod(int(segment.start), 60)
            fraction = int((segment.start - int(segment.start)) * 100)
            file.write(f"[{minutes:02d}:{seconds:02d}.{fraction:02d}] {segment.text}\n")

def gen_subtitles(file_path: str, transcription_type: str, force_language=None) -> None:
    """Generates subtitles for a video file.

    Args:
        file_path: str - The path to the video file.
        transcription_type: str - The type of transcription or translation to perform.
        force_language: str - The language to force for transcription or translation. Default is None.
    """

    try:
        logging.info(f"Added {os.path.basename(file_path)} for transcription.")
        logging.info(f"Transcribing file: {os.path.basename(file_path)}")

        start_time = time.time()
        start_model()

        if force_detected_language_to:
            force_language = force_detected_language_to
            logging.info(f"Forcing language to {force_language}")

        if custom_regroup:
            result = model.transcribe_stable(file_path, language=force_language, task=transcription_type,
                                             progress_callback=progress, initial_prompt=custom_model_prompt,
                                             regroup=custom_regroup)
        else:
            result = model.transcribe_stable(file_path, language=force_language, task=transcription_type,
                                             progress_callback=progress, initial_prompt=custom_model_prompt)

        appendLine(result)
        file_name, file_extension = os.path.splitext(file_path)

        if isAudioFileExtension(file_extension) and lrc_for_audio_files:
            write_lrc(result, file_name + '.lrc')
        else:
            result.to_srt_vtt(file_name + subextension, word_level=word_level_highlight)

        elapsed_time = time.time() - start_time
        minutes, seconds = divmod(int(elapsed_time), 60)
        logging.info(
            f"Transcription of {os.path.basename(file_path)} is completed, it took {minutes} minutes and {seconds} seconds to complete.")

    except Exception as e:
        logging.info(f"Error processing or transcribing {file_path}: {e}")

    finally:
        delete_model()

def gen_subtitles_queue(file_path: str, transcription_type: str, force_language=None) -> None:
    global task_queue
    
    if not has_audio(file_path):
        logging.debug(f"{file_path} doesn't have any audio to transcribe!")
        return

    message = None
    if has_subtitle_language(file_path, skipifinternalsublang):
        message = f"{file_path} already has an internal subtitle we want, skipping generation"
    elif os.path.exists(file_path.rsplit('.', 1)[0] + subextension):
        message = f"{file_path} already has a subtitle created for this, skipping it"
    elif os.path.exists(file_path.rsplit('.', 1)[0] + subextensionSDH):
        message = f"{file_path} already has a SDH subtitle created for this, skipping it"
    if message:
        logging.info(message)
        return
    
    task = {
        'path': file_path,
        'transcribe_or_translate': transcription_type,
        'force_language':force_language
    }
    task_queue.put(task)

def get_file_name_without_extension(file_path):
    file_name, file_extension = os.path.splitext(file_path)
    return file_name

def has_subtitle_language(video_file, target_language):
    try:
        with av.open(video_file) as container:
            subtitle_stream = next((stream for stream in container.streams if stream.type == 'subtitle' and 'language' in stream.metadata and stream.metadata['language'] == target_language), None)
            
            if subtitle_stream:
                logging.debug(f"Subtitles in '{target_language}' language found in the video.")
                return True
            else:
                logging.debug(f"No subtitles in '{target_language}' language found in the video.")
    except Exception as e:
        logging.info(f"An error occurred: {e}")
        return False
    
def get_plex_file_name(itemid: str, server_ip: str, plex_token: str) -> str:
    """Gets the full path to a file from the Plex server.

    Args:
        itemid: The ID of the item in the Plex library.
        server_ip: The IP address of the Plex server.
        plex_token: The Plex token.

    Returns:
        The full path to the file.
    """

    url = f"{server_ip}/library/metadata/{itemid}"

    headers = {
        "X-Plex-Token": plex_token,
    }

    response = requests.get(url, headers=headers)

    if response.status_code == 200:
        root = ET.fromstring(response.content)
        fullpath = root.find(".//Part").attrib['file']
        return fullpath
    else:
        raise Exception(f"Error: {response.status_code}")

def refresh_plex_metadata(itemid: str, server_ip: str, plex_token: str) -> None:
    """
    Refreshes the metadata of a Plex library item.
    
    Args:
        itemid: The ID of the item in the Plex library whose metadata needs to be refreshed.
        server_ip: The IP address of the Plex server.
        plex_token: The Plex token used for authentication.
        
    Raises:
        Exception: If the server does not respond with a successful status code.
    """

    # Plex API endpoint to refresh metadata for a specific item
    url = f"{server_ip}/library/metadata/{itemid}/refresh"

    # Headers to include the Plex token for authentication
    headers = {
        "X-Plex-Token": plex_token,
    }

    # Sending the PUT request to refresh metadata
    response = requests.put(url, headers=headers)

    # Check if the request was successful
    if response.status_code == 200:
        logging.info("Metadata refresh initiated successfully.")
    else:
        raise Exception(f"Error refreshing metadata: {response.status_code}")

def refresh_jellyfin_metadata(itemid: str, server_ip: str, jellyfin_token: str) -> None:
    """
    Refreshes the metadata of a Jellyfin library item.
    
    Args:
        itemid: The ID of the item in the Jellyfin library whose metadata needs to be refreshed.
        server_ip: The IP address of the Jellyfin server.
        jellyfin_token: The Jellyfin token used for authentication.
        
    Raises:
        Exception: If the server does not respond with a successful status code.
    """

    # Jellyfin API endpoint to refresh metadata for a specific item
    url = f"{server_ip}/Items/{itemid}/Refresh"

    # Headers to include the Jellyfin token for authentication
    headers = {
        "Authorization": f"MediaBrowser Token={jellyfin_token}",
    }

    # Cheap way to get the admin user id, and save it for later use.
    users = json.loads(requests.get(f"{server_ip}/Users", headers=headers).content)
    jellyfin_admin = get_jellyfin_admin(users)

    response = requests.get(f"{server_ip}/Users/{jellyfin_admin}/Items/{itemid}/Refresh", headers=headers)

    # Sending the PUT request to refresh metadata
    response = requests.post(url, headers=headers)

    # Check if the request was successful
    if response.status_code == 204:
        logging.info("Metadata refresh queued successfully.")
    else:
        raise Exception(f"Error refreshing metadata: {response.status_code}")


def get_jellyfin_file_name(item_id: str, jellyfin_url: str, jellyfin_token: str) -> str:
    """Gets the full path to a file from the Jellyfin server.

    Args:
        jellyfin_url: The URL of the Jellyfin server.
        jellyfin_token: The Jellyfin token.
        item_id: The ID of the item in the Jellyfin library.

    Returns:
        The full path to the file.
    """

    headers = {
        "Authorization": f"MediaBrowser Token={jellyfin_token}",
    }

    # Cheap way to get the admin user id, and save it for later use.
    users = json.loads(requests.get(f"{jellyfin_url}/Users", headers=headers).content)
    jellyfin_admin = get_jellyfin_admin(users)

    response = requests.get(f"{jellyfin_url}/Users/{jellyfin_admin}/Items/{item_id}", headers=headers)

    if response.status_code == 200:
        file_name = json.loads(response.content)['Path']
        return file_name
    else:
        raise Exception(f"Error: {response.status_code}")

def get_jellyfin_admin(users):
    for user in users:
        if user["Policy"]["IsAdministrator"]:
            return user["Id"]
            
    raise Exception("Unable to find administrator user in Jellyfin")

def has_audio(file_path):
    try:
        with av.open(file_path) as container:
            return any(stream.type == 'audio' for stream in container.streams)
    except (av.AVError, UnicodeDecodeError):
        return False

def path_mapping(fullpath):
    if use_path_mapping:
        logging.debug("Updated path: " + fullpath.replace(path_mapping_from, path_mapping_to))
        return fullpath.replace(path_mapping_from, path_mapping_to)
    return fullpath

if monitor:
    # Define a handler class that will process new files
    class NewFileHandler(FileSystemEventHandler):
        def create_subtitle(self, event):
            # Only process if it's a file
            if not event.is_directory:
                file_path = event.src_path
                if has_audio(file_path):
                # Call the gen_subtitles function
                    logging.info(f"File: {path_mapping(file_path)} was added")
                    gen_subtitles_queue(path_mapping(file_path), transcribe_or_translate)
        def on_created(self, event):
            self.create_subtitle(event)
        def on_modified(self, event):
            self.create_subtitle(event)

def transcribe_existing(transcribe_folders, forceLanguage=None):
    transcribe_folders = transcribe_folders.split("|")
    logging.info("Starting to search folders to see if we need to create subtitles.")
    logging.debug("The folders are:")
    for path in transcribe_folders:
        logging.debug(path)
        for root, dirs, files in os.walk(path):
            for file in files:
                file_path = os.path.join(root, file)
                gen_subtitles_queue(path_mapping(file_path), transcribe_or_translate, forceLanguage)
    # if the path specified was actually a single file and not a folder, process it
    if os.path.isfile(path):
        if has_audio(path):
            gen_subtitles_queue(path_mapping(path), transcribe_or_translate, forceLanguage) 
     # Set up the observer to watch for new files
    if monitor:
        observer = Observer()
        for path in transcribe_folders:
            if os.path.isdir(path):
                handler = NewFileHandler()
                observer.schedule(handler, path, recursive=True)
        observer.start()
        logging.info("Finished searching and queueing files for transcription. Now watching for new files.")

whisper_languages = {
    "en": "english",
    "zh": "chinese",
    "de": "german",
    "es": "spanish",
    "ru": "russian",
    "ko": "korean",
    "fr": "french",
    "ja": "japanese",
    "pt": "portuguese",
    "tr": "turkish",
    "pl": "polish",
    "ca": "catalan",
    "nl": "dutch",
    "ar": "arabic",
    "sv": "swedish",
    "it": "italian",
    "id": "indonesian",
    "hi": "hindi",
    "fi": "finnish",
    "vi": "vietnamese",
    "he": "hebrew",
    "uk": "ukrainian",
    "el": "greek",
    "ms": "malay",
    "cs": "czech",
    "ro": "romanian",
    "da": "danish",
    "hu": "hungarian",
    "ta": "tamil",
    "no": "norwegian",
    "th": "thai",
    "ur": "urdu",
    "hr": "croatian",
    "bg": "bulgarian",
    "lt": "lithuanian",
    "la": "latin",
    "mi": "maori",
    "ml": "malayalam",
    "cy": "welsh",
    "sk": "slovak",
    "te": "telugu",
    "fa": "persian",
    "lv": "latvian",
    "bn": "bengali",
    "sr": "serbian",
    "az": "azerbaijani",
    "sl": "slovenian",
    "kn": "kannada",
    "et": "estonian",
    "mk": "macedonian",
    "br": "breton",
    "eu": "basque",
    "is": "icelandic",
    "hy": "armenian",
    "ne": "nepali",
    "mn": "mongolian",
    "bs": "bosnian",
    "kk": "kazakh",
    "sq": "albanian",
    "sw": "swahili",
    "gl": "galician",
    "mr": "marathi",
    "pa": "punjabi",
    "si": "sinhala",
    "km": "khmer",
    "sn": "shona",
    "yo": "yoruba",
    "so": "somali",
    "af": "afrikaans",
    "oc": "occitan",
    "ka": "georgian",
    "be": "belarusian",
    "tg": "tajik",
    "sd": "sindhi",
    "gu": "gujarati",
    "am": "amharic",
    "yi": "yiddish",
    "lo": "lao",
    "uz": "uzbek",
    "fo": "faroese",
    "ht": "haitian creole",
    "ps": "pashto",
    "tk": "turkmen",
    "nn": "nynorsk",
    "mt": "maltese",
    "sa": "sanskrit",
    "lb": "luxembourgish",
    "my": "myanmar",
    "bo": "tibetan",
    "tl": "tagalog",
    "mg": "malagasy",
    "as": "assamese",
    "tt": "tatar",
    "haw": "hawaiian",
    "ln": "lingala",
    "ha": "hausa",
    "ba": "bashkir",
    "jw": "javanese",
    "su": "sundanese",
}

greetings_translations = {
    "en": "Hello, welcome to my lecture.",
    "zh": "你好,欢迎来到我的讲座。",
    "de": "Hallo, willkommen zu meiner Vorlesung.",
    "es": "Hola, bienvenido a mi conferencia.",
    "ru": "Привет, добро пожаловать на мою лекцию.",
    "ko": "안녕하세요, 제 강의에 오신 것을 환영합니다.",
    "fr": "Bonjour, bienvenue à mon cours.",
    "ja": "こんにちは、私の講義へようこそ。",
    "pt": "Olá, bem-vindo à minha palestra.",
    "tr": "Merhaba, dersime hoş geldiniz.",
    "pl": "Cześć, witaj na mojej wykładzie.",
    "ca": "Hola, benvingut a la meva conferència.",
    "nl": "Hallo, welkom bij mijn lezing.",
    "ar": "مرحبًا، مرحبًا بك في محاضرتي.",
    "sv": "Hej, välkommen till min föreläsning.",
    "it": "Ciao, benvenuto alla mia conferenza.",
    "id": "Halo, selamat datang di kuliah saya.",
    "hi": "नमस्ते, मेरे व्याख्यान में आपका स्वागत है।",
    "fi": "Hei, tervetuloa luentooni.",
    "vi": "Xin chào, chào mừng bạn đến với bài giảng của tôi.",
    "he": "שלום, ברוך הבא להרצאתי.",
    "uk": "Привіт, ласкаво просимо на мою лекцію.",
    "el": "Γεια σας, καλώς ήλθατε στη διάλεξή μου.",
    "ms": "Halo, selamat datang ke kuliah saya.",
    "cs": "Ahoj, vítejte na mé přednášce.",
    "ro": "Bună, bun venit la cursul meu.",
    "da": "Hej, velkommen til min forelæsning.",
    "hu": "Helló, üdvözöllek az előadásomon.",
    "ta": "வணக்கம், என் பாடத்திற்கு வரவேற்கிறேன்.",
    "no": "Hei, velkommen til foredraget mitt.",
    "th": "สวัสดีครับ ยินดีต้อนรับสู่การบรรยายของฉัน",
    "ur": "ہیلو، میری لیکچر میں خوش آمدید۔",
    "hr": "Pozdrav, dobrodošli na moje predavanje.",
    "bg": "Здравейте, добре дошли на моята лекция.",
    "lt": "Sveiki, sveiki atvykę į mano paskaitą.",
    "la": "Salve, gratias vobis pro eo quod meam lectionem excipitis.",
    "mi": "Kia ora, nau mai ki aku rorohiko.",
    "ml": "ഹലോ, എന്റെ പാഠത്തിലേക്ക് സ്വാഗതം.",
    "cy": "Helo, croeso i fy narlith.",
    "sk": "Ahoj, vitajte na mojej prednáške.",
    "te": "హలో, నా పాఠానికి స్వాగతం.",
    "fa": "سلام، خوش آمدید به سخنرانی من.",
    "lv": "Sveiki, laipni lūdzam uz manu lekciju.",
    "bn": "হ্যালো, আমার লেকচারে আপনাকে স্বাগতম।",
    "sr": "Здраво, добродошли на моје предавање.",
    "az": "Salam, mənim dərsimə xoş gəlmisiniz.",
    "sl": "Pozdravljeni, dobrodošli na moje predavanje.",
    "kn": "ಹಲೋ, ನನ್ನ ಭಾಷಣಕ್ಕೆ ಸುಸ್ವಾಗತ.",
    "et": "Tere, tere tulemast minu loengusse.",
    "mk": "Здраво, добредојдовте на мојата предавање.",
    "br": "Demat, kroget e oa d'an daol-labour.",
    "eu": "Kaixo, ongi etorri nire hitzaldi.",
    "is": "Halló, velkomin á fyrirlestur minn.",
    "hy": "Բարեւ, ողջույն եկավ իմ դասընթացի.",
    "ne": "नमस्ते, मेरो प्रवचनमा स्वागत छ।",
    "mn": "Сайн байна уу, миний хичээлд тавтай морилно уу.",
    "bs": "Zdravo, dobrodošli na moje predavanje.",
    "kk": "Сәлеметсіз бе, оқу сабағыма қош келдіңіз.",
    "sq": "Përshëndetje, mirësevini në ligjëratën time.",
    "sw": "Habari, karibu kwenye hotuba yangu.",
    "gl": "Ola, benvido á miña conferencia.",
    "mr": "नमस्कार, माझ्या व्याख्यानात आपले स्वागत आहे.",
    "pa": "ਸਤ ਸ੍ਰੀ ਅਕਾਲ, ਮੇਰੀ ਵਾਰਤਾ ਵਿੱਚ ਤੁਹਾਨੂੰ ਜੀ ਆਇਆ ਨੂੰ ਸੁਆਗਤ ਹੈ।",
    "si": "හෙලෝ, මගේ වාර්තාවට ඔබේ ස්වාදයට සාමාජිකත්වයක්.",
    "km": "សួស្តី, សូមស្វាគមន៍មកកាន់អារម្មណ៍របស់ខ្ញុំ។",
    "sn": "Mhoro, wakaribisha kumusoro wangu.",
    "yo": "Bawo, ku isoro si wa orin mi.",
    "so": "Soo dhawoow, soo dhawoow marka laga hadlo kulambanayaashaaga.",
    "af": "Hallo, welkom by my lesing.",
    "oc": "Bonjorn, benvenguda a ma conferéncia.",
    "ka": "გამარჯობა, მესწარმეტყველება ჩემი ლექციაზე.",
    "be": "Прывітанне, запрашаем на маю лекцыю.",
    "tg": "Салом, ба лаҳзаи мавзӯъати ман хуш омадед.",
    "sd": "هيلو، ميري ليڪڪي ۾ خوش آيو.",
    "gu": "નમસ્તે, મારી પાઠશાળામાં આપનું સ્વાગત છે.",
    "am": "ሰላም፣ ለአንድነት የተመረጠን ትምህርት በመሆን እናመሰግናለን።",
    "yi": "העלאָ, ווילקומן צו מיין לעקטשער.",
    "lo": "ສະບາຍດີ, ຍິນດີນາງຂອງຂ້ອຍໄດ້ຍິນດີ.",
    "uz": "Salom, darsimda xush kelibsiz.",
    "fo": "Halló, vælkomin til mína fyrilestrar.",
    "ht": "Bonjou, byenveni nan leson mwen.",
    "ps": "سلام، مې لومړۍ کې خوش آمدید.",
    "tk": "Salam, dersimiňe hoş geldiňiz.",
    "nn": "Hei, velkomen til førelesinga mi.",
    "mt": "Hello, merħba għall-lezzjoni tiegħi.",
    "sa": "नमस्ते, मम उपन्यासे स्वागतं.",
    "lb": "Hallo, wëllkomm zu menger Lektioun.",
    "my": "မင်္ဂလာပါ၊ ကျေးဇူးတင်သည့်ကိစ္စသည်။",
    "bo": "བཀྲ་ཤིས་བདེ་ལེགས་འབད་བཅོས། ངའི་འཛིན་གྱི་སློབ་མའི་མིང་གི་འཕྲོད།",
    "tl": "Kamusta, maligayang pagdating sa aking leksyon.",
    "mg": "Manao ahoana, tonga soa sy tonga soa eto amin'ny lesona.",
    "as": "নমস্কাৰ, মোৰ পাঠলৈ আপোনাক স্বাগতম।",
    "tt": "Сәлам, лекциямга рәхмәт киләсез.",
    "haw": "Aloha, welina me ke kipa ana i ko'u ha'i 'ōlelo.",
    "ln": "Mbote, tango na zongisa mwa kilela yandi.",
    "ha": "Sannu, ka ci gaba da tattalin arziki na.",
    "ba": "Сәләм, лекцияғыма ҡуш тиңләгәнһүҙ.",
    "jw": "Halo, sugeng datang marang kulawargané.",
    "su": "Wilujeng, hatur nuhun ka lékturing abdi.",
}

env_variables = {
    "TRANSCRIBE_DEVICE": {"description": "Can transcribe via gpu (Cuda only) or cpu. Takes option of 'cpu', 'gpu', 'cuda'.", "default": "cpu", "value": ""},
    "WHISPER_MODEL": {"description": "Can be: 'tiny', 'tiny.en', 'base', 'base.en', 'small', 'small.en', 'medium', 'medium.en', 'large-v1','large-v2', 'large-v3', 'large', 'distil-large-v2', 'distil-medium.en', 'distil-small.en'", "default": "medium", "value": ""},
    "CONCURRENT_TRANSCRIPTIONS": {"description": "Number of files it will transcribe in parallel", "default": "2", "value": ""},
    "WHISPER_THREADS": {"description": "Number of threads to use during computation", "default": "4", "value": ""},
    "MODEL_PATH": {"description": "This is where the WHISPER_MODEL will be stored. This defaults to placing it where you execute the script in the folder 'models'", "default": "./models", "value": ""},
    "PROCADDEDMEDIA": {"description": "Will gen subtitles for all media added regardless of existing external/embedded subtitles (based off of SKIPIFINTERNALSUBLANG)", "default": True, "value": ""},
    "PROCMEDIAONPLAY": {"description": "Will gen subtitles for all played media regardless of existing external/embedded subtitles (based off of SKIPIFINTERNALSUBLANG)", "default": True, "value": ""},
    "NAMESUBLANG": {"description": "Allows you to pick what it will name the subtitle. Instead of using EN, I'm using AA, so it doesn't mix with existing external EN subs, and AA will populate higher on the list in Plex.", "default": "aa", "value": ""},
    "SKIPIFINTERNALSUBLANG": {"description": "Will not generate a subtitle if the file has an internal sub matching the 3 letter code of this variable", "default": "eng", "value": ""},
    "WORD_LEVEL_HIGHLIGHT": {"description": "Highlights each word as it's spoken in the subtitle.", "default": False, "value": ""},
    "PLEXSERVER": {"description": "This needs to be set to your local plex server address/port", "default": "http://plex:32400", "value": ""},
    "PLEXTOKEN": {"description": "This needs to be set to your plex token", "default": "token here", "value": ""},
    "JELLYFINSERVER": {"description": "Set to your Jellyfin server address/port", "default": "http://jellyfin:8096", "value": ""},
    "JELLYFINTOKEN": {"description": "Generate a token inside the Jellyfin interface", "default": "token here", "value": ""},
    "WEBHOOKPORT": {"description": "Change this if you need a different port for your webhook", "default": "9000", "value": ""},
    "USE_PATH_MAPPING": {"description": "Similar to sonarr and radarr path mapping, this will attempt to replace paths on file systems that don't have identical paths. Currently only support for one path replacement.", "default": False, "value": ""},
    "PATH_MAPPING_FROM": {"description": "This is the path of my media relative to my Plex server", "default": "/tv", "value": ""},
    "PATH_MAPPING_TO": {"description": "This is the path of that same folder relative to my Mac Mini that will run the script", "default": "/Volumes/TV", "value": ""},
    "TRANSCRIBE_FOLDERS": {"description": "Takes a pipe '|' separated list and iterates through and adds those files to be queued for subtitle generation if they don't have internal subtitles", "default": "", "value": ""},
    "TRANSCRIBE_OR_TRANSLATE": {"description": "Takes either 'transcribe' or 'translate'. Transcribe will transcribe the audio in the same language as the input. Translate will transcribe and translate into English.", "default": "transcribe", "value": ""},
    "COMPUTE_TYPE": {"description": "Set compute-type using the following information: https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md", "default": "auto", "value": ""},
    "DEBUG": {"description": "Provides some debug data that can be helpful to troubleshoot path mapping and other issues. If set to true, any modifications to the script will auto-reload it (if it isn't actively transcoding). Useful to make small tweaks without re-downloading the whole file.", "default": True, "value": ""},
    "FORCE_DETECTED_LANGUAGE_TO": {"description": "This is to force the model to a language instead of the detected one, takes a 2 letter language code.", "default": "", "value": ""},
    "CLEAR_VRAM_ON_COMPLETE": {"description": "This will delete the model and do garbage collection when queue is empty. Good if you need to use the VRAM for something else.", "default": True, "value": ""},
    "UPDATE": {"description": "Will pull latest subgen.py from the repository if True. False will use the original subgen.py built into the Docker image. Standalone users can use this with launcher.py to get updates.","default": False,"value": ""},
    "APPEND": {"description": "Will add the following at the end of a subtitle: 'Transcribed by whisperAI with faster-whisper ({whisper_model}) on {datetime.now()}'","default": False,"value": ""},
    "MONITOR": {"description": "Will monitor TRANSCRIBE_FOLDERS for real-time changes to see if we need to generate subtitles","default": False,"value": ""},
    "USE_MODEL_PROMPT": {"description": "When set to True, will use the default prompt stored in greetings_translations 'Hello, welcome to my lecture.' to try and force the use of punctuation in transcriptions that don't.","default": False,"value": ""},
    "CUSTOM_MODEL_PROMPT": {"description": "If USE_MODEL_PROMPT is True, you can override the default prompt (See: [prompt engineering in whisper](https://medium.com/axinc-ai/prompt-engineering-in-whisper-6bb18003562d%29) for great examples).","default": "","value": ""},
    "LRC_FOR_AUDIO_FILES": {"description": "Will generate LRC (instead of SRT) files for filetypes: '.mp3', '.flac', '.wav', '.alac', '.ape', '.ogg', '.wma', '.m4a', '.m4b', '.aac', '.aiff'","default": True,"value": ""},
    "CUSTOM_REGROUP": {"description": "Attempts to regroup some of the segments to make a cleaner looking subtitle. See #68 for discussion. Set to blank if you want to use Stable-TS default regroups algorithm of cm_sp=,* /,_sg=.5_mg=.3+3_sp=.* /。/?/?","default": "cm_sl=84_sl=42++++++1","value": ""},
    "DETECT_LANGUAGE_LENGTH": {"description": "Detect language on the first x seconds of the audio.","default": 30,"value": ""},
}

if __name__ == "__main__":
    import uvicorn
    update_env_variables()
    logging.info(f"Subgen v{subgen_version}")
    logging.info("Starting Subgen with listening webhooks!")
    logging.info(f"Transcriptions are limited to running {str(concurrent_transcriptions)} at a time")
    logging.info(f"Running {str(whisper_threads)} threads per transcription")
    logging.info(f"Using {transcribe_device} to encode")
    logging.info(f"Using faster-whisper")
    os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
    if transcribe_folders:
        transcribe_existing(transcribe_folders)
    uvicorn.run("__main__:app", host="0.0.0.0", port=int(webhookport), reload=reload_script_on_change, use_colors=True)