RegBot4.1 / models /langOpen.py
hbui's picture
Update models/langOpen.py
319f50d verified
raw
history blame
1.93 kB
import os
import openai
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain_pinecone import PineconeVectorStore
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CohereRerank
from langchain_community.llms import Cohere
prompt_template = """Answer the question using the given context to the best of your ability.
If you don't know, answer I don't know.
Context: {context}
Topic: {topic}"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "topic"])
class LangOpen:
def __init__(self, model_name: str) -> None:
self.index = self.initialize_index("langOpen")
self.llm = ChatOpenAI(temperature=0.3, model=model_name)
self.chain = LLMChain(llm=self.llm, prompt=PROMPT)
def initialize_index(self, index_name):
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
index_name = "openai-embeddings"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
return vectorstore
def get_response(self, query_str):
print("query_str: ", query_str)
print("model_name: ", self.llm.model_name)
#docs = self.index.similarity_search(query_str, k=4)
vectorstore_retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 10})
compressor = CohereRerank()
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=vectorstore_retriever
)
docs = compression_retriever.get_relevant_documents(query_str)
inputs = [{"context": doc.page_content, "topic": query_str} for doc in docs]
result = self.chain.apply(inputs)[0]["text"]
return result