|
import os |
|
|
|
import openai |
|
from dotenv import load_dotenv |
|
from langchain.chains import LLMChain |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.vectorstores import FAISS |
|
|
|
loader = PyPDFLoader("./assets/pdf/CADWReg.pdf") |
|
pages = loader.load_and_split() |
|
|
|
load_dotenv() |
|
|
|
prompt_template = """Answer the question using the given context to the best of your ability. |
|
If you don't know, answer I don't know. |
|
Context: {context} |
|
Topic: {topic}""" |
|
|
|
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "topic"]) |
|
|
|
|
|
class LangOpen: |
|
def __init__(self, model_name: str) -> None: |
|
self.index = self.initialize_index("langOpen") |
|
self.llm = ChatOpenAI(temperature=0.3, model=model_name) |
|
self.chain = LLMChain(llm=self.llm, prompt=PROMPT) |
|
|
|
def initialize_index(self, index_name): |
|
path = f"./vectorStores/{index_name}" |
|
embeddings = OpenAIEmbeddings() |
|
|
|
if os.path.exists(path=path): |
|
return FAISS.load_local(folder_path=path, embeddings=embeddings) |
|
else: |
|
faiss = FAISS.from_documents(pages, embeddings) |
|
faiss.save_local(path) |
|
return faiss |
|
|
|
def get_response(self, query_str): |
|
print("query_str: ", query_str) |
|
print("model_name: ", self.llm.model_name) |
|
docs = self.index.similarity_search(query_str, k=4) |
|
inputs = [{"context": doc.page_content, "topic": query_str} for doc in docs] |
|
result = self.chain.apply(inputs)[0]["text"] |
|
return result |
|
|