ArmandXiao
accepted by IEEE T-PAMI
e4588a1
raw
history blame
31.9 kB
import yaml
import gradio as gr
import pandas as pd
import numpy as np
import altair as alt
import plotly.express as px
import pickle
import os
from src.assets.css_html_js import custom_css
from src.assets.awesome_mapping import paper_mapping, section_mapping, bibtex_mapping, venue_mapping, citation_key_mapping
TITLE = "🔥CNN Structured Pruning Leaderboard"
PAPER_LINK = 'https://arxiv.org/abs/2303.00566'
PAPER_LINK_IEEE = 'https://ieeexplore.ieee.org/document/10330640'
AWESOME_PRUNING_LINK = 'https://github.com/he-y/Awesome-Pruning'
BIBTEX = '''
@article{he2023structured,
author={He, Yang and Xiao, Lingao},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Structured Pruning for Deep Convolutional Neural Networks: A Survey},
year={2023},
volume={},
number={},
pages={1-20},
doi={10.1109/TPAMI.2023.3334614}}
'''
INTRO = f"""
Welcome to our dedicated site for the survey paper: "[Structured Pruning for Deep Convolutional Neural Networks: A Survey]({PAPER_LINK})".
Our survey is accepted by IEEE T-PAMI. Links include [arXiv]({PAPER_LINK}) and [IEEE Xplore]({PAPER_LINK_IEEE}).
Github Repo: [Awesome Pruning: A curated list of neural network pruning resources]({AWESOME_PRUNING_LINK}).
This platform serves as a repository and visual representation of the benchmarks from studies covered in our survey.
Here, you can explore the reported accuracy and FLOPs metrics from various papers, providing an at-a-glance view of the advancements and methodologies in the domain of structured pruning.
If you find this website helpful, please consider citing our paper 😊
"""
COLS_KEEP = ['sec', 'year', 'method', 'model', 'acc', 'acc-pruned', 'acc-change', 'flops-pruned', 'flops-drop', 'param-pruned', 'param-drop', 'dataset']
COLS = ['sec', 'year', 'method', 'model', 'acc', 'acc-pruned', 'acc-change', 'flops', 'flops-pruned', 'flops-drop', 'param', 'param-pruned', 'param-drop', 'dataset']
MISC_GROUP = ['model', 'dataset', 'method', 'year', 'sec']
ACC_GROUP = ['acc', 'acc-pruned', 'acc-change']
FLOPS_GROUP = ['flops', 'flops-pruned', 'flops-drop']
PARAM_GROUP = ['param', 'param-pruned', 'param-drop']
# Define a mapping from original headers to custom headers
CUSTOM_HEADER_MAP = {
'sec': 'Section',
'year': 'Year',
'method': 'Method',
'model': 'Model',
'acc': 'Acc',
'acc-pruned': 'Acc Pruned',
# 'acc-change': 'Acc. Δ (%)',
'acc-change': 'Acc ↓ (%)',
'flops': 'FLOPs (M)',
'flops-pruned': 'FLOPs Pruned (M)',
'flops-drop': 'FLOPs ↓ (%)',
'param': 'Params (M)',
'param-pruned': 'Params Pruned (M)',
'param-drop': 'Params ↓ (%)',
'dataset': 'Dataset'
}
CUSTOM_HEADER_MAP.update({v: k for k, v in CUSTOM_HEADER_MAP.items()})
df = pickle.load(open("src/assets/data.pkl", "rb"))
baseline = pickle.load(open("src/assets/baseline.pkl", "rb"))
def filter_table_combined(leaderboard, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop):
search_boxes = [search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop]
column_names = ['model', 'method', 'year', 'sec', 'acc', 'acc-pruned', 'acc-change', 'flops', 'flops-pruned', 'flops-drop', 'param', 'param-pruned', 'param-drop']
filtered_df = leaderboard.copy()
for idx, (q, col_name) in enumerate(zip(search_boxes, column_names)):
if q != '':
if idx == 3: # Special case for section
if q[0] != '2': # Does not start with 2
q = "2." + q[0]
elif len(q) < 5:
filtered_df = filtered_df[filtered_df[col_name].str.slice(0, len(q)).str.lower() == q.strip().lower()]
else:
filtered_df = filtered_df[filtered_df[col_name].astype(str).str.lower() == q.strip().lower()]
elif idx < 4: # Similar to original filter_table
filtered_df = filtered_df[filtered_df[col_name].astype(str).str.contains(q, case=False)]
else: # Similar to original filter_table_by_acc
filtered_df[col_name].replace('', np.nan, inplace=True)
filtered_df.dropna(subset=[col_name], inplace=True)
if idx in [4, 5, 9, 12]:
filtered_df = filtered_df[filtered_df[col_name].astype(float) > float(q)]
else:
filtered_df = filtered_df[filtered_df[col_name].astype(float) < float(q)]
return filtered_df
# Function to update columns
def update_columns(leaderboard, columns: list):
return leaderboard[leaderboard.columns.intersection(columns)].rename(columns=CUSTOM_HEADER_MAP)
def update_table(leaderboard, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop):
updated_df = filter_table_combined(leaderboard, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop)
updated_df = update_columns(updated_df, COLS)
return updated_df
def update_text(x):
return CUSTOM_HEADER_MAP[x]
def get_shown_columns(misc_checkbox_group, acc_checkbox_group, flops_checkbox_group, param_checkbox_group):
# return all columns if all checkbox groups are selected
updated_columns = [CUSTOM_HEADER_MAP[col] for col in misc_checkbox_group + acc_checkbox_group + flops_checkbox_group + param_checkbox_group]
print("Columns updated to", updated_columns, "\n")
return updated_columns
def make_plot(data, y_axis='acc-change', x_axis='flops-drop', color_sorting='model'):
y_axis = CUSTOM_HEADER_MAP[y_axis]
x_axis = x_axis
color_sorting = color_sorting
# Drop rows where y_axis and x_axis columns are null
data.replace('', np.nan, inplace=True)
data.dropna(subset=[y_axis, x_axis], how='any', inplace=True)
# Convert 'year' to string
data[CUSTOM_HEADER_MAP['year']] = data[CUSTOM_HEADER_MAP['year']].astype(str)
# Sort by y_axis
data.sort_values(by=[y_axis], ascending=[False], inplace=True)
# Get min and max for x and y axes
x_min, x_max = data[x_axis].min(), data[x_axis].max()
y_min, y_max = data[y_axis].min(), data[y_axis].max()
if data is None or data.empty:
# plot with title:
# "No results found or bad query"
return alt.Chart(pd.DataFrame({'x': [], 'y': []})).mark_point().encode().properties(title="No results found or bad query")
# Create a selection that filters data based on the legend
legend_selection = alt.selection_point(fields=[color_sorting], bind='legend')
# Create a selection for hover
hover_selection = alt.selection_point(on='mouseover', nearest=False, empty=True)
# Create Altair scatter plot
scatter = alt.Chart(data).mark_point().encode(
x=alt.X(x_axis, title=x_axis, scale=alt.Scale(domain=(x_min-2, x_max+2))),
y=alt.Y(y_axis, title=y_axis, scale=alt.Scale(domain=(y_min-2, y_max+2))),
color=color_sorting,
tooltip=[CUSTOM_HEADER_MAP['method'], CUSTOM_HEADER_MAP['model'], CUSTOM_HEADER_MAP['acc-pruned'], CUSTOM_HEADER_MAP['acc-change'], CUSTOM_HEADER_MAP['flops-pruned'], CUSTOM_HEADER_MAP['flops-drop'], CUSTOM_HEADER_MAP['year'], CUSTOM_HEADER_MAP['sec']],
opacity=alt.condition(hover_selection, alt.value(1), alt.value(0.2))
).add_params(
legend_selection,
hover_selection,
).transform_filter(
legend_selection
).interactive()
return scatter
def item_selected(leaderboard: gr.Dataframe, evt: gr.SelectData):
# evt.index
# evt.value
item = leaderboard.loc[leaderboard[CUSTOM_HEADER_MAP['method']] == evt.value]
if len(item) == 0:
return "✖️ Invalid cell! Please click on **Method Name** to see details...", "✖️ Invalid cell! Please click on **Method Name** to see details..."
elif len(item) > 1:
item = item.iloc[0]
section = item[CUSTOM_HEADER_MAP['sec']]
method = item[CUSTOM_HEADER_MAP['method']]
# check if type is pandas Series
if type(section) is pd.Series:
section = section.iloc[0]
if type(method) is pd.Series:
method = method.iloc[0]
sec_record = section_mapping[section] # (section, sub section)
awesome_record = paper_mapping[method] # (paper, code)
bibtex_record = bibtex_mapping[method] # (bibtex, score)
# replace any KEY with value in venue_mapping
for k, v in venue_mapping.items():
if k in bibtex_record:
bibtex_record = bibtex_record.replace(k, v)
# process section: (section, sub section)
main_section = sec_record[0]
sub_section = sec_record[1]
# process awesome_record: " | paper | conf | type | code | "
paper = "Not Recorded 😭"
conf = "Not Recorded 😭"
code = "Not Recorded 😭"
if awesome_record is not None:
splitted = awesome_record.split('|')
paper = splitted[1].strip()
conf = splitted[2].strip()
code = splitted[-2].strip()
if code == "" or code == "-":
code = "Not Recorded 😭"
text = f"""
Section: {main_section}{sub_section} ({section})
Paper: {paper}
Venue: {conf}
Code: {code}
"""
return text, bibtex_record
def create_tab(app, dataset_name, dataset_id, df):
dataset = dataset_name.lower()
df_dataset = df[df['dataset'] == dataset]
original_df_pd = df_dataset.copy()
if dataset == 'cifar10':
dataset_label = 'CIFAR-10'
elif dataset == 'cifar100':
dataset_label = 'CIFAR-100'
elif dataset == 'imagenet':
dataset_label = 'ImageNet-1K'
else:
raise ValueError(f"Unknown dataset: {dataset}")
with gr.TabItem(dataset_label, id=dataset_id):
with gr.Row(equal_height=True):
with gr.Column():
with gr.Group():
with gr.Row():
gr.Markdown("**Search by below options:**", elem_classes="markdown-subtitle")
with gr.Row():
search_box = gr.Textbox(
placeholder="[press enter to search]",
label="Model",
show_label=True,
)
search_box_method = gr.Textbox(
placeholder="[press enter to search]",
label="Method",
show_label=True,
)
search_box_year = gr.Textbox(
placeholder="[press enter to search]",
label="Year",
show_label=True,
)
search_box_section = gr.Textbox(
placeholder="[press enter to search]",
label="Section",
show_label=True,
)
with gr.Row():
acc_base_box = gr.Textbox(
placeholder="[press enter to search]",
label="Baseline Accuracy",
info="E.g., `90` means search for baseline accuracy > 90%.",
show_label=True,
)
acc_box = gr.Textbox(
placeholder="[press enter to search]",
label="Accuracy After Pruning",
info="E.g., `90` means search for accuracy after pruning > 90%.",
show_label=True,
)
acc_change = gr.Textbox(
placeholder="[press enter to search]",
label="Accuracy Drop",
info="E.g., `2` means search for accuracy drop < 2%.",
show_label=True,
)
with gr.Row():
flops_base_box = gr.Textbox(
placeholder="[press enter to search]",
label="Baseline FLOPs",
info="E.g., `100` means search for baseline FLOPs < 100M.",
show_label=True,
)
flops_box = gr.Textbox(
placeholder="[press enter to search]",
label="FLOPs After Pruning",
info="E.g., `100` means search for FLOPs after pruning < 100M.",
show_label=True,
)
flops_drop = gr.Textbox(
placeholder="[press enter to search]",
label="FLOPs Drop",
info="E.g., `50` means search for FLOPs drop > 50%.",
show_label=True,
)
with gr.Row():
param_base_box = gr.Textbox(
placeholder="[press enter to search]",
label="Baseline Parameters",
info="E.g., `10` means search for baseline parameters < 10M.",
show_label=True,
)
param_box = gr.Textbox(
placeholder="[press enter to search]",
label="Parameters after Pruning",
info="E.g., `10` means search for parameters after pruning < 10M.",
show_label=True,
)
param_drop = gr.Textbox(
placeholder="[press enter to search]",
label="Parameters Drop",
info="E.g., `50` means search for parameters drop by > 50%.",
show_label=True,
)
with gr.Accordion(label="See Model Baselines", open=False):
# text = gr.Text(value='Add baseline model specifications', label='Baseline FLOPs and Params', lines=2)
baseline_dataset = baseline[baseline['dataset'] == dataset]
baseline_no_dataset = baseline_dataset.drop(columns=['dataset'])
baseline_no_dataset = baseline_no_dataset.rename(columns=CUSTOM_HEADER_MAP)
baseline_df = gr.Dataframe(
value=baseline_no_dataset,
headers=list(baseline_no_dataset.columns),
interactive=False,
visible=True,
wrap=True,
)
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
sort_choice_box = gr.Radio(choices=[CUSTOM_HEADER_MAP["model"], CUSTOM_HEADER_MAP["sec"], CUSTOM_HEADER_MAP["year"]], value=CUSTOM_HEADER_MAP["model"], label="Draw with", info="Draw with [model, section, year]")
with gr.Column(scale=1):
x_axis_box = gr.Radio([CUSTOM_HEADER_MAP["flops-drop"], CUSTOM_HEADER_MAP["flops-pruned"]], value=CUSTOM_HEADER_MAP["flops-drop"], label="Set x-axis", info="Set x-axis to [FLOPs after pruning, FLOPs drop (%)]")
with gr.Column():
plot_acc_change = gr.Plot(label="Plot of Accuracy Change (%)")
y_axis_acc_change = gr.Text(value="acc-change", visible=False)
plot_acc = gr.Plot(label="Plot of Accuracy After Pruing")
y_axis_acc = gr.Text(value="acc-pruned", visible=False)
original_df = gr.Dataframe(
value=original_df_pd,
headers=list(df_dataset.columns),
max_rows=None,
interactive=False,
visible=False,
)
with gr.Row(): # table
df_dataset = df_dataset.rename(columns=CUSTOM_HEADER_MAP)
leaderboard_table = gr.Dataframe(
value=df_dataset,
headers=list(df_dataset.columns),
max_rows=None,
interactive=False,
visible=True,
)
with gr.Row():
details = gr.Markdown(value="*Click any **Method Name** in above table to see details...*", elem_classes='markdown-text')
bibtex_code = gr.Code("Click any Method Name in above table to see details...", label="BibTeX")
# app.load(new_plot, outputs=[plot_acc_change])
app.load(make_plot, inputs=[leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
app.load(make_plot, inputs=[leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
boxes = [search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop]
for search in boxes:
search.submit(update_table, [original_df, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop], outputs=[leaderboard_table])
leaderboard_table.change(make_plot, inputs=[leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
leaderboard_table.change(make_plot, inputs=[leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
leaderboard_table.select(item_selected, inputs=[leaderboard_table], outputs=[details, bibtex_code])
sort_choice_box.change(make_plot, [leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
sort_choice_box.change(make_plot, [leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
x_axis_box.change(make_plot, [leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
x_axis_box.change(make_plot, [leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
def main():
global df
app = gr.Blocks(css=custom_css)
with app:
gr.Markdown(TITLE, elem_classes="markdown-title")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("👋 About", id=0):
gr.Markdown(INTRO, elem_classes="markdown-text")
gr.Code(BIBTEX, elem_classes="bibtex", label="BibTeX")
with gr.TabItem("📑 User Guide", id=1):
gr.Markdown("Guide to use this leaderboard", elem_classes="markdown-title")
with gr.Accordion(label="0. Sections", open=True):
gr.Markdown("## Sections", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/overview.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
We divide the webpage into below sections:
1. Dataset Tabs
2. Query Section
3. Data Plotting
4. Data Table
More detailed functions are explained in the following sections.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="1. Dataset Tabs", open=False):
gr.Markdown("# Dataset Tabs", elem_classes="markdown-text")
with gr.Row():
gr.Image("src/images/cifar10-tab.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
gr.Image("src/images/cifar100-tab.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
gr.Image("src/images/imagenet-tab.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Row():
text = """
- Click the corresponding tabs to view the results of different datasets.
- We currently support three datasets: CIFAR-10, CIFAR-100, and ImageNet-1K.
- Results are 'isolated' for each dataset, i.e., the results of different datasets are not mixed together.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="2. Query Section", open=False):
gr.Markdown("## Query Section", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/query-overview.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
The query box includes two parts
- <span style="color:red">red</span> box: query by paper attributes
- <span style="color:blue">blue</span> box: query by experimental results
Press [Enter] key to update.
- update both plotting and table.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/use-case.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Example:
Here, we provide a use case and show how query works.
If a user wants to find methods that satisfy the followings:
1. Select Dataset: ImageNet-1K
2. Select Model: ResNet-50
3. Select Pruning Method: Regularization-based Pruning
4. Target 1: Accuracy after pruning > 75\%
5. Target 2: Pruned FLOPs > 40%
6. Target 3: Model size after pruning < 30M
By entering the requirements to the corresponding query box, we can narrow down the results and compare the remaining ones.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="3. Data Plotting", open=False):
gr.Markdown("## Data Plotting", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/plotting-overview.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
The data plotting section can be split into two parts:
- <span style="color:red">red</span> box: contains two radio buttons to select:
- (left) Group colors by ‘model’, ‘section’, or ‘year’.
- (right) Change x-axis of the plots to ‘FLOPs drop (%)’ or ‘FLOPs after pruning (M)’.
- <span style="color:blue">blue</span> box: interactive plots
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/group-model.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Model (default)
X-axis: FLOPs drop (%) (default)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/group-section.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Section
X-axis: FLOPs drop (%) (default)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/group-year.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Year
X-axis: FLOPs drop (%) (default)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/flops-pruned.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Model (default)
X-axis: FLOPs after pruning (M)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/default.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Default Figure
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/drag.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
1. Shift the graph by dragging.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/zoom-out.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
2. Zoom-in/out by scrolling.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/hover.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
3. Hover over the data point to see the details.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/legend-before.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
4. Click any legend to filter out others.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/legend-after.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
4. Click any legend to filter out others.
5. Click white spaces/Double Click to restore to default scaling and legends.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="4. Data Table", open=False):
gr.Markdown("## Data Table", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Row():
gr.Image("src/images/drop-down-crop.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
gr.Image("src/images/expand.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Click to the expand the table
- The expanded table contains the baseline FLOPs and Parameters for each model.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/sort_btn.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Click the sort button:
- Sort in ascending order.
- click more than once to toggle ascending/descending.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/detail.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Click any method name (highlighted in the <span style="color:red">red</span> box) to show details of the paper (<span style="color:blue">blue</span> box).
The details include:
- detailed section
- link of paper
- venue of publication
- released code (if any)
- the BibTex used in our paper
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
create_tab(app, "cifar10", 0, df)
create_tab(app, "cifar100", 1, df)
create_tab(app, "imagenet", 2, df)
app.launch()
if __name__ == "__main__":
main()