File size: 16,047 Bytes
3b7b011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import sys

sys.path.append("..")
import os

now_dir = os.getcwd()

from dotenv import load_dotenv
from lib.infer.modules.vc.modules import VC
from assets.configs.config import Config

load_dotenv()
config = Config()
vc = VC(config)

import shutil
import numpy as np
import torch

import soundfile as sf
from gtts import gTTS
import edge_tts
import asyncio
import scipy.io.wavfile as wavfile
import nltk

nltk.download("punkt", quiet=True)
from nltk.tokenize import sent_tokenize
from bark import SAMPLE_RATE

import json
import ssl
from typing import Any, Dict, List, Optional
import asyncio
import aiohttp
import certifi

VOICE_LIST = (
    "https://speech.platform.bing.com/consumer/speech/synthesize/"
    + "readaloud/voices/list?trustedclienttoken="
    + "6A5AA1D4EAFF4E9FB37E23D68491D6F4"
)
def get_bark_voice():
    mensaje = """
v2/en_speaker_0	English	Male
v2/en_speaker_1	English	Male
v2/en_speaker_2	English	Male
v2/en_speaker_3	English	Male
v2/en_speaker_4	English	Male
v2/en_speaker_5	English	Male
v2/en_speaker_6	English	Male
v2/en_speaker_7	English	Male
v2/en_speaker_8	English	Male
v2/en_speaker_9	English	Female
v2/zh_speaker_0	Chinese (Simplified)	Male
v2/zh_speaker_1	Chinese (Simplified)	Male
v2/zh_speaker_2	Chinese (Simplified)	Male
v2/zh_speaker_3	Chinese (Simplified)	Male
v2/zh_speaker_4	Chinese (Simplified)	Female
v2/zh_speaker_5	Chinese (Simplified)	Male
v2/zh_speaker_6	Chinese (Simplified)	Female
v2/zh_speaker_7	Chinese (Simplified)	Female
v2/zh_speaker_8	Chinese (Simplified)	Male
v2/zh_speaker_9	Chinese (Simplified)	Female
v2/fr_speaker_0	French	Male
v2/fr_speaker_1	French	Female
v2/fr_speaker_2	French	Female
v2/fr_speaker_3	French	Male
v2/fr_speaker_4	French	Male
v2/fr_speaker_5	French	Female
v2/fr_speaker_6	French	Male
v2/fr_speaker_7	French	Male
v2/fr_speaker_8	French	Male
v2/fr_speaker_9	French	Male
v2/de_speaker_0	German	Male
v2/de_speaker_1	German	Male
v2/de_speaker_2	German	Male
v2/de_speaker_3	German	Female
v2/de_speaker_4	German	Male
v2/de_speaker_5	German	Male
v2/de_speaker_6	German	Male
v2/de_speaker_7	German	Male
v2/de_speaker_8	German	Female
v2/de_speaker_9	German	Male
v2/hi_speaker_0	Hindi	Female
v2/hi_speaker_1	Hindi	Female
v2/hi_speaker_2	Hindi	Male
v2/hi_speaker_3	Hindi	Female
v2/hi_speaker_4	Hindi	Female
v2/hi_speaker_5	Hindi	Male
v2/hi_speaker_6	Hindi	Male
v2/hi_speaker_7	Hindi	Male
v2/hi_speaker_8	Hindi	Male
v2/hi_speaker_9	Hindi	Female
v2/it_speaker_0	Italian	Male
v2/it_speaker_1	Italian	Male
v2/it_speaker_2	Italian	Female
v2/it_speaker_3	Italian	Male
v2/it_speaker_4	Italian	Male
v2/it_speaker_5	Italian	Male
v2/it_speaker_6	Italian	Male
v2/it_speaker_7	Italian	Female
v2/it_speaker_8	Italian	Male
v2/it_speaker_9	Italian	Female
v2/ja_speaker_0	Japanese	Female
v2/ja_speaker_1	Japanese	Female
v2/ja_speaker_2	Japanese	Male
v2/ja_speaker_3	Japanese	Female
v2/ja_speaker_4	Japanese	Female
v2/ja_speaker_5	Japanese	Female
v2/ja_speaker_6	Japanese	Male
v2/ja_speaker_7	Japanese	Female
v2/ja_speaker_8	Japanese	Female
v2/ja_speaker_9	Japanese	Female
v2/ko_speaker_0	Korean	Female
v2/ko_speaker_1	Korean	Male
v2/ko_speaker_2	Korean	Male
v2/ko_speaker_3	Korean	Male
v2/ko_speaker_4	Korean	Male
v2/ko_speaker_5	Korean	Male
v2/ko_speaker_6	Korean	Male
v2/ko_speaker_7	Korean	Male
v2/ko_speaker_8	Korean	Male
v2/ko_speaker_9	Korean	Male
v2/pl_speaker_0	Polish	Male
v2/pl_speaker_1	Polish	Male
v2/pl_speaker_2	Polish	Male
v2/pl_speaker_3	Polish	Male
v2/pl_speaker_4	Polish	Female
v2/pl_speaker_5	Polish	Male
v2/pl_speaker_6	Polish	Female
v2/pl_speaker_7	Polish	Male
v2/pl_speaker_8	Polish	Male
v2/pl_speaker_9	Polish	Female
v2/pt_speaker_0	Portuguese	Male
v2/pt_speaker_1	Portuguese	Male
v2/pt_speaker_2	Portuguese	Male
v2/pt_speaker_3	Portuguese	Male
v2/pt_speaker_4	Portuguese	Male
v2/pt_speaker_5	Portuguese	Male
v2/pt_speaker_6	Portuguese	Male
v2/pt_speaker_7	Portuguese	Male
v2/pt_speaker_8	Portuguese	Male
v2/pt_speaker_9	Portuguese	Male
v2/ru_speaker_0	Russian	Male
v2/ru_speaker_1	Russian	Male
v2/ru_speaker_2	Russian	Male
v2/ru_speaker_3	Russian	Male
v2/ru_speaker_4	Russian	Male
v2/ru_speaker_5	Russian	Female
v2/ru_speaker_6	Russian	Female
v2/ru_speaker_7	Russian	Male
v2/ru_speaker_8	Russian	Male
v2/ru_speaker_9	Russian	Female
v2/es_speaker_0	Spanish	Male
v2/es_speaker_1	Spanish	Male
v2/es_speaker_2	Spanish	Male
v2/es_speaker_3	Spanish	Male
v2/es_speaker_4	Spanish	Male
v2/es_speaker_5	Spanish	Male
v2/es_speaker_6	Spanish	Male
v2/es_speaker_7	Spanish	Male
v2/es_speaker_8	Spanish	Female
v2/es_speaker_9	Spanish	Female
v2/tr_speaker_0	Turkish	Male
v2/tr_speaker_1	Turkish	Male
v2/tr_speaker_2	Turkish	Male
v2/tr_speaker_3	Turkish	Male
v2/tr_speaker_4	Turkish	Female
v2/tr_speaker_5	Turkish	Female
v2/tr_speaker_6	Turkish	Male
v2/tr_speaker_7	Turkish	Male
v2/tr_speaker_8	Turkish	Male
v2/tr_speaker_9	Turkish	Male
    """
    # Dividir el mensaje en líneas
    lineas = mensaje.split("\n")
    datos_deseados = []
    for linea in lineas:
        partes = linea.split("\t")
        if len(partes) == 3:
            clave, _, genero = partes
            datos_deseados.append(f"{clave}-{genero}")

    return datos_deseados

# ||-----------------------------------------------------------------------------------||
# ||                         Obtained from dependency edge_tts                         ||
# ||-----------------------------------------------------------------------------------||

async def list_voices(*, proxy: Optional[str] = None) -> Any:
    """
    List all available voices and their attributes.

    This pulls data from the URL used by Microsoft Edge to return a list of
    all available voices.

    Returns:
        dict: A dictionary of voice attributes.
    """
    ssl_ctx = ssl.create_default_context(cafile=certifi.where())
    async with aiohttp.ClientSession(trust_env=True) as session:
        async with session.get(
            VOICE_LIST,
            headers={
                "Authority": "speech.platform.bing.com",
                "Sec-CH-UA": '" Not;A Brand";v="99", "Microsoft Edge";v="91", "Chromium";v="91"',
                "Sec-CH-UA-Mobile": "?0",
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
                "(KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36 Edg/91.0.864.41",
                "Accept": "*/*",
                "Sec-Fetch-Site": "none",
                "Sec-Fetch-Mode": "cors",
                "Sec-Fetch-Dest": "empty",
                "Accept-Encoding": "gzip, deflate, br",
                "Accept-Language": "en-US,en;q=0.9",
            },
            proxy=proxy,
            ssl=ssl_ctx,
        ) as url:
            data = json.loads(await url.text())
    return data
async def create(custom_voices: Optional[List[Dict[str, Any]]] = None) -> List[Dict[str, Any]]:
    """
    Creates a list of voices with all available voices and their attributes.
    """
    voices = await list_voices() if custom_voices is None else custom_voices
    voices = [
        {**voice, **{"Language": voice["Locale"].split("-")[0]}}
        for voice in voices
    ]
    simplified_voices = [
        {'ShortName': voice['ShortName'], 'Gender': voice['Gender']}
        for voice in voices
    ]
    return simplified_voices

async def loop_main():
    voices = await create()
    voices_json = json.dumps(voices)
    return voices_json

def get_edge_voice():
    loop = asyncio.get_event_loop()
    voices_json = loop.run_until_complete(loop_main())
    voices = json.loads(voices_json)
    tts_voice = []
    for voice in voices:
        short_name = voice['ShortName']
        gender = voice['Gender']
        formatted_entry = f"{short_name}-{gender}"
        tts_voice.append(formatted_entry)
       # print(f"{short_name}-{gender}")
    return tts_voice

set_bark_voice = get_bark_voice()
set_edge_voice = get_edge_voice()

def update_tts_methods_voice(select_value):
    # ["Edge-tts", "RVG-tts", "Bark-tts"]
    if select_value == "Edge-tts":
        return {"choices": set_edge_voice, "value": "", "__type__": "update"}
    elif select_value == "Bark-tts":
        return {"choices": set_bark_voice, "value": "", "__type__": "update"}


def custom_voice(
    _values,  # filter indices
    audio_files,  # all audio files
    model_voice_path="",
    transpose=0,
    f0method="pm",
    index_rate_=float(0.66),
    crepe_hop_length_=float(64),
    f0_autotune=False,
    file_index="",
    file_index2="",
):
    vc.get_vc(model_voice_path)

    for _value_item in _values:
        filename = (
            "assets/audios/audio_outputs" + audio_files[_value_item]
            if _value_item != "converted_tts"
            else audio_files[0]
        )
        # filename = "audio2/"+audio_files[_value_item]
        try:
            print(audio_files[_value_item], model_voice_path)
        except:
            pass
        info_, (sample_, audio_output_) = vc.vc_single_dont_save(
            sid=0,
            input_audio_path1=filename,  # f"audio2/{filename}",
            f0_up_key=transpose,  # transpose for m to f and reverse 0 12
            f0_file=None,
            f0_method=f0method,
            file_index=file_index,  # dir pwd?
            file_index2=file_index2,
            # file_big_npy1,
            index_rate=index_rate_,
            filter_radius=int(3),
            resample_sr=int(0),
            rms_mix_rate=float(0.25),
            protect=float(0.33),
            crepe_hop_length=crepe_hop_length_,
            f0_autotune=f0_autotune,
            f0_min=50,
            note_min=50,
            f0_max=1100,
            note_max=1100,
        )

        sf.write(
            file=filename,  # f"audio2/{filename}",
            samplerate=sample_,
            data=audio_output_,
        )


def cast_to_device(tensor, device):
    try:
        return tensor.to(device)
    except Exception as e:
        print(e)
        return tensor


def __bark__(text, voice_preset):
    os.makedirs(os.path.join(now_dir, "tts"), exist_ok=True)
    from transformers import AutoProcessor, BarkModel

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    dtype = torch.float32 if "cpu" in device else torch.float16
    bark_processor = AutoProcessor.from_pretrained(
        "suno/bark",
        cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
        torch_dtype=dtype,
    )
    bark_model = BarkModel.from_pretrained(
        "suno/bark",
        cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
        torch_dtype=dtype,
    ).to(device)
    # bark_model.enable_cpu_offload()
    inputs = bark_processor(text=[text], return_tensors="pt", voice_preset=voice_preset)
    tensor_dict = {
        k: cast_to_device(v, device) if hasattr(v, "to") else v
        for k, v in inputs.items()
    }
    speech_values = bark_model.generate(**tensor_dict, do_sample=True)
    sampling_rate = bark_model.generation_config.sample_rate
    speech = speech_values.cpu().numpy().squeeze()
    return speech, sampling_rate


def use_tts(
    tts_text,
    tts_voice,
    model_path,
    index_path,
    transpose,
    f0_method,
    index_rate,
    crepe_hop_length,
    f0_autotune,
    tts_method,
):
    if tts_voice == None:
        return

    output_folder = "assets/audios/audio-outputs"
    os.makedirs(output_folder, exist_ok=True)
    output_count = 1  # Contador para nombres de archivo únicos

    while True:
        converted_tts_filename = os.path.join(output_folder, f"tts_out_{output_count}.wav")
        bark_out_filename = os.path.join(output_folder, f"bark_out_{output_count}.wav")
        
        if not os.path.exists(converted_tts_filename) and not os.path.exists(bark_out_filename):
            break
        output_count += 1
    
    
    if "SET_LIMIT" == os.getenv("DEMO"):
        if len(tts_text) > 60:
            tts_text = tts_text[:60]
            print("DEMO; limit to 60 characters")

    language = tts_voice[:2]
    if tts_method == "Edge-tts":
        try:
            # nest_asyncio.apply() # gradio;not
            asyncio.run(
                edge_tts.Communicate(
                    tts_text, "-".join(tts_voice.split("-")[:-1])
                ).save(converted_tts_filename)
            )
        except:
            try:
                tts = gTTS(tts_text, lang=language)
                tts.save(converted_tts_filename)
                tts.save
                print(
                    f"No audio was received. Please change the tts voice for {tts_voice}. USING gTTS."
                )
            except:
                tts = gTTS("a", lang=language)
                tts.save(converted_tts_filename)
                print("Error: Audio will be replaced.")
        
        try:
            vc.get_vc(model_path)
            info_, (sample_, audio_output_) = vc.vc_single_dont_save(
                sid=0,
                input_audio_path1=converted_tts_filename,
                f0_up_key=transpose,
                f0_file=None,
                f0_method=f0_method,
                file_index="",
                file_index2=index_path,
                index_rate=index_rate,
                filter_radius=int(3),
                resample_sr=int(0),
                rms_mix_rate=float(0.25),
                protect=float(0.33),
                crepe_hop_length=crepe_hop_length,
                f0_autotune=f0_autotune,
                f0_min=50,
                note_min=50,
                f0_max=1100,
                note_max=1100,
            )

            # Genera un nombre de archivo único para el archivo procesado por vc.vc_single_dont_save
            vc_output_filename = os.path.join(output_folder, f"converted_tts_{output_count}.wav")
            
            # Guarda el archivo de audio procesado por vc.vc_single_dont_save
            wavfile.write(
                vc_output_filename,
                rate=sample_,
                data=audio_output_,
            )

            return vc_output_filename,converted_tts_filename
        except Exception as e:
            print(f"{e}")
            return None, None

    elif tts_method == "Bark-tts":
        try:
            script = tts_text.replace("\n", " ").strip()
            sentences = sent_tokenize(script)
            print(sentences)
            silence = np.zeros(int(0.25 * SAMPLE_RATE))
            pieces = []
            for sentence in sentences:
                audio_array, _ = __bark__(sentence, tts_voice.split("-")[0])
                pieces += [audio_array, silence.copy()]

            sf.write(
                file=bark_out_filename, samplerate=SAMPLE_RATE, data=np.concatenate(pieces)
            )
            vc.get_vc(model_path)
            info_, (sample_, audio_output_) = vc.vc_single_dont_save(
                sid=0,
                input_audio_path1=os.path.join(
                    now_dir, "assets", "audios", "audio-outputs", "bark_out.wav"
                ),  # f"audio2/{filename}",
                f0_up_key=transpose,  # transpose for m to f and reverse 0 12
                f0_file=None,
                f0_method=f0_method,
                file_index="",  # dir pwd?
                file_index2=index_path,
                # file_big_npy1,
                index_rate=index_rate,
                filter_radius=int(3),
                resample_sr=int(0),
                rms_mix_rate=float(0.25),
                protect=float(0.33),
                crepe_hop_length=crepe_hop_length,
                f0_autotune=f0_autotune,
                f0_min=50,
                note_min=50,
                f0_max=1100,
                note_max=1100,
            )
            
            vc_output_filename = os.path.join(output_folder, f"converted_bark_{output_count}.wav")
            
            # Guarda el archivo de audio procesado por vc.vc_single_dont_save
            wavfile.write(
                vc_output_filename,
                rate=sample_,
                data=audio_output_,
            )

            return vc_output_filename, bark_out_filename

        except Exception as e:
            print(f"{e}")
            return None, None