r3gm's picture
Upload 340 files
3b7b011
from tensorboard.backend.event_processing import event_accumulator
import os
from shutil import copy2
from re import search as RSearch
import pandas as pd
from ast import literal_eval as LEval
weights_dir = 'logs/weights/'
def find_biggest_tensorboard(tensordir):
try:
files = [f for f in os.listdir(tensordir) if f.endswith('.0')]
if not files:
print("No files with the '.0' extension found!")
return
max_size = 0
biggest_file = ""
for file in files:
file_path = os.path.join(tensordir, file)
if os.path.isfile(file_path):
file_size = os.path.getsize(file_path)
if file_size > max_size:
max_size = file_size
biggest_file = file
return biggest_file
except FileNotFoundError:
print("Couldn't find your model!")
return
def main(model_name, save_freq, lastmdls):
global lowestval_weight_dir, scl
tensordir = os.path.join('logs', model_name)
lowestval_weight_dir = os.path.join(tensordir, "lowestvals")
latest_file = find_biggest_tensorboard(tensordir)
if latest_file is None:
print("Couldn't find a valid tensorboard file!")
return
tfile = os.path.join(tensordir, latest_file)
ea = event_accumulator.EventAccumulator(tfile,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
ea.Reload()
ea.Tags()
scl = ea.Scalars('loss/g/total')
listwstep = {}
for val in scl:
if (val.step // save_freq) * save_freq in [val.step for val in scl]:
listwstep[float(val.value)] = (val.step // save_freq) * save_freq
lowest_vals = sorted(listwstep.keys())[:lastmdls]
sorted_dict = {value: step for value, step in listwstep.items() if value in lowest_vals}
return sorted_dict
def selectweights(model_name, file_dict, weights_dir, lowestval_weight_dir):
os.makedirs(lowestval_weight_dir, exist_ok=True)
logdir = []
files = []
lbldict = {
'Values': {},
'Names': {}
}
weights_dir_path = os.path.join(weights_dir, "")
low_val_path = os.path.join(os.getcwd(), os.path.join(lowestval_weight_dir, ""))
try:
file_dict = LEval(file_dict)
except Exception as e:
print(f"Error! {e}")
return f"Couldn't load tensorboard file! {e}"
weights = [f for f in os.scandir(weights_dir)]
for key, value in file_dict.items():
pattern = fr"^{model_name}_.*_s{value}\.pth$"
matching_weights = [f.name for f in weights if f.is_file() and RSearch(pattern, f.name)]
for weight in matching_weights:
source_path = weights_dir_path + weight
destination_path = os.path.join(lowestval_weight_dir, weight)
copy2(source_path, destination_path)
logdir.append(f"File = {weight} Value: {key}, Step: {value}")
lbldict['Names'][weight] = weight
lbldict['Values'][weight] = key
files.append(low_val_path + weight)
print(f"File = {weight} Value: {key}, Step: {value}")
yield ('\n'.join(logdir), files, pd.DataFrame(lbldict))
return ''.join(logdir), files, pd.DataFrame(lbldict)
if __name__ == "__main__":
model = str(input("Enter the name of the model: "))
sav_freq = int(input("Enter save frequency of the model: "))
ds = main(model, sav_freq)
if ds: selectweights(model, ds, weights_dir, lowestval_weight_dir)