import torch from typing import Optional from diffusers.models.attention import TemporalBasicTransformerBlock, _chunked_feed_forward from diffusers.utils.torch_utils import maybe_allow_in_graph @maybe_allow_in_graph class TemporalPoseCondTransformerBlock(TemporalBasicTransformerBlock): def forward( self, hidden_states: torch.FloatTensor, # [bs * num_frame, h * w, c] num_frames: int, encoder_hidden_states: Optional[torch.FloatTensor] = None, # [bs * h * w, 1, c] pose_feature: Optional[torch.FloatTensor] = None, # [bs, c, n_frame, h, w] ) -> torch.FloatTensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_frames, seq_length, channels = hidden_states.shape batch_size = batch_frames // num_frames hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) # [bs * h * w, frame, c] residual = hidden_states hidden_states = self.norm_in(hidden_states) if self._chunk_size is not None: hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) else: hidden_states = self.ff_in(hidden_states) if self.is_res: hidden_states = hidden_states + residual norm_hidden_states = self.norm1(hidden_states) pose_feature = pose_feature.permute(0, 3, 4, 2, 1).reshape(batch_size * seq_length, num_frames, -1) attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None, pose_feature=pose_feature) hidden_states = attn_output + hidden_states # 3. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, pose_feature=pose_feature) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.is_res: hidden_states = ff_output + hidden_states else: hidden_states = ff_output hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) return hidden_states