File size: 4,508 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import json
import math
import numpy as np
from PIL import Image

import torch
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF

import pytorch_lightning as pl

import datasets
from models.ray_utils import get_ray_directions
from utils.misc import get_rank


class BlenderDatasetBase:
    def setup(self, config, split):
        self.config = config
        self.split = split
        self.rank = get_rank()

        self.has_mask = True
        self.apply_mask = True

        with open(
            os.path.join(self.config.root_dir, f"transforms_{self.split}.json"), "r"
        ) as f:
            meta = json.load(f)

        if "w" in meta and "h" in meta:
            W, H = int(meta["w"]), int(meta["h"])
        else:
            W, H = 800, 800

        if "img_wh" in self.config:
            w, h = self.config.img_wh
            assert round(W / w * h) == H
        elif "img_downscale" in self.config:
            w, h = W // self.config.img_downscale, H // self.config.img_downscale
        else:
            raise KeyError("Either img_wh or img_downscale should be specified.")

        self.w, self.h = w, h
        self.img_wh = (self.w, self.h)

        self.near, self.far = self.config.near_plane, self.config.far_plane

        self.focal = (
            0.5 * w / math.tan(0.5 * meta["camera_angle_x"])
        )  # scaled focal length

        # ray directions for all pixels, same for all images (same H, W, focal)
        self.directions = get_ray_directions(
            self.w, self.h, self.focal, self.focal, self.w // 2, self.h // 2
        ).to(
            self.rank
        )  # (h, w, 3)

        self.all_c2w, self.all_images, self.all_fg_masks = [], [], []

        for i, frame in enumerate(meta["frames"]):
            c2w = torch.from_numpy(np.array(frame["transform_matrix"])[:3, :4])
            self.all_c2w.append(c2w)

            img_path = os.path.join(self.config.root_dir, f"{frame['file_path']}.png")
            img = Image.open(img_path)
            img = img.resize(self.img_wh, Image.BICUBIC)
            img = TF.to_tensor(img).permute(1, 2, 0)  # (4, h, w) => (h, w, 4)

            self.all_fg_masks.append(img[..., -1])  # (h, w)
            self.all_images.append(img[..., :3])

        self.all_c2w, self.all_images, self.all_fg_masks = (
            torch.stack(self.all_c2w, dim=0).float().to(self.rank),
            torch.stack(self.all_images, dim=0).float().to(self.rank),
            torch.stack(self.all_fg_masks, dim=0).float().to(self.rank),
        )


class BlenderDataset(Dataset, BlenderDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __len__(self):
        return len(self.all_images)

    def __getitem__(self, index):
        return {"index": index}


class BlenderIterableDataset(IterableDataset, BlenderDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __iter__(self):
        while True:
            yield {}


@datasets.register("blender")
class VideoNVSDataModule(pl.LightningDataModule):
    def __init__(self, config):
        super().__init__()
        self.config = config

    def setup(self, stage=None):
        if stage in [None, "fit"]:
            self.train_dataset = BlenderIterableDataset(
                self.config, self.config.train_split
            )
        if stage in [None, "fit", "validate"]:
            self.val_dataset = BlenderDataset(self.config, self.config.val_split)
        if stage in [None, "test"]:
            self.test_dataset = BlenderDataset(self.config, self.config.test_split)
        if stage in [None, "predict"]:
            self.predict_dataset = BlenderDataset(self.config, self.config.train_split)

    def prepare_data(self):
        pass

    def general_loader(self, dataset, batch_size):
        sampler = None
        return DataLoader(
            dataset,
            num_workers=os.cpu_count(),
            batch_size=batch_size,
            pin_memory=True,
            sampler=sampler,
        )

    def train_dataloader(self):
        return self.general_loader(self.train_dataset, batch_size=1)

    def val_dataloader(self):
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self):
        return self.general_loader(self.test_dataset, batch_size=1)

    def predict_dataloader(self):
        return self.general_loader(self.predict_dataset, batch_size=1)