File size: 7,897 Bytes
d85898f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d997fc
b1531dc
d85898f
 
7d997fc
d85898f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1531dc
d85898f
b1531dc
 
 
 
 
 
d85898f
b1531dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d4833
 
 
 
 
 
 
b1531dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85898f
b1531dc
a83659a
 
b1531dc
 
 
 
 
 
 
 
d85898f
 
 
b1531dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# TODO
import numpy as np
import argparse
import torch
from torchvision.utils import make_grid
import tempfile
import gradio as gr
from omegaconf import OmegaConf
from einops import rearrange
from scripts.pub.V3D_512 import (
    sample_one,
    get_batch,
    get_unique_embedder_keys_from_conditioner,
    load_model,
)
from sgm.util import default, instantiate_from_config
from safetensors.torch import load_file as load_safetensors
from PIL import Image
from kiui.op import recenter
from torchvision.transforms import ToTensor
from einops import rearrange, repeat
import rembg
import os
from glob import glob
from mediapy import write_video
from pathlib import Path
import spaces
from huggingface_hub import hf_hub_download


@spaces.GPU
def do_sample(
    image,
    num_frames,
    num_steps,
    decoding_t,
    border_ratio,
    ignore_alpha,
    output_folder,
):
    # if image.mode == "RGBA":
    #     image = image.convert("RGB")
    image = Image.fromarray(image)
    w, h = image.size

    if border_ratio > 0:
        if image.mode != "RGBA" or ignore_alpha:
            image = image.convert("RGB")
            image = np.asarray(image)
            carved_image = rembg.remove(image, session=rembg_session)  # [H, W, 4]
        else:
            image = np.asarray(image)
            carved_image = image
        mask = carved_image[..., -1] > 0
        image = recenter(carved_image, mask, border_ratio=border_ratio)
        image = image.astype(np.float32) / 255.0
        if image.shape[-1] == 4:
            image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
        image = Image.fromarray((image * 255).astype(np.uint8))
    else:
        print("Ignore border ratio")
    image = image.resize((512, 512))

    image = ToTensor()(image)
    image = image * 2.0 - 1.0

    image = image.unsqueeze(0).to(device)
    H, W = image.shape[2:]
    assert image.shape[1] == 3
    F = 8
    C = 4
    shape = (num_frames, C, H // F, W // F)

    value_dict = {}
    value_dict["motion_bucket_id"] = 0
    value_dict["fps_id"] = 0
    value_dict["cond_aug"] = 0.05
    value_dict["cond_frames_without_noise"] = clip_model(image)
    value_dict["cond_frames"] = ae_model.encode(image)
    value_dict["cond_frames"] += 0.05 * torch.randn_like(value_dict["cond_frames"])
    value_dict["cond_aug"] = 0.05

    with torch.no_grad():
        with torch.autocast(device):
            batch, batch_uc = get_batch(
                get_unique_embedder_keys_from_conditioner(model.conditioner),
                value_dict,
                [1, num_frames],
                T=num_frames,
                device=device,
            )
            c, uc = model.conditioner.get_unconditional_conditioning(
                batch,
                batch_uc=batch_uc,
                force_uc_zero_embeddings=[
                    "cond_frames",
                    "cond_frames_without_noise",
                ],
            )

            for k in ["crossattn", "concat"]:
                uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

            randn = torch.randn(shape, device=device)
            randn = randn.to(device)

            additional_model_inputs = {}
            additional_model_inputs["image_only_indicator"] = torch.zeros(
                2, num_frames
            ).to(device)
            additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

            def denoiser(input, sigma, c):
                return model.denoiser(
                    model.model, input, sigma, c, **additional_model_inputs
                )

            samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
            model.en_and_decode_n_samples_a_time = decoding_t
            samples_x = model.decode_first_stage(samples_z)
            samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

            os.makedirs(output_folder, exist_ok=True)
            base_count = len(glob(os.path.join(output_folder, "*.mp4")))
            video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

            frames = (
                (rearrange(samples, "t c h w -> t h w c") * 255)
                .cpu()
                .numpy()
                .astype(np.uint8)
            )
            write_video(video_path, frames, fps=6)

    return video_path


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# download
V3D_ckpt_path = hf_hub_download(repo_id="heheyas/V3D", filename="V3D.ckpt")
svd_xt_ckpt_path = hf_hub_download(
    repo_id="stabilityai/stable-video-diffusion-img2vid-xt",
    filename="svd_xt.safetensors",
)

model_config = "./scripts/pub/configs/V3D_512.yaml"
num_frames = OmegaConf.load(
    model_config
).model.params.sampler_config.params.guider_config.params.num_frames
print("Detected num_frames:", num_frames)
# num_steps = default(num_steps, 25)
num_steps = 25
output_folder = "outputs/V3D_512"

sd = load_safetensors(svd_xt_ckpt_path)
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
clip_model = instantiate_from_config(clip_model_config).eval()
clip_sd = dict()
for k, v in sd.items():
    if "conditioner.embedders.0" in k:
        clip_sd[k.replace("conditioner.embedders.0.", "")] = v
clip_model.load_state_dict(clip_sd)
clip_model = clip_model.to(device)

ae_model_config = OmegaConf.load("./configs/ae/video.yaml")
ae_model = instantiate_from_config(ae_model_config).eval()
encoder_sd = dict()
for k, v in sd.items():
    if "first_stage_model" in k:
        encoder_sd[k.replace("first_stage_model.", "")] = v
ae_model.load_state_dict(encoder_sd)
ae_model = ae_model.to(device)
rembg_session = rembg.new_session()

model, _ = load_model(
    model_config,
    device,
    num_frames,
    num_steps,
    min_cfg=3.5,
    max_cfg=3.5,
    ckpt_path=V3D_ckpt_path,
)
model = model.to(device)

with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo:
    with gr.Row(equal_height=True):
        with gr.Column():
            input_image = gr.Image(value=None, label="Input Image")

            border_ratio_slider = gr.Slider(
                value=0.3,
                label="Border Ratio",
                minimum=0.05,
                maximum=0.5,
                step=0.05,
            )
            decoding_t_slider = gr.Slider(
                value=1,
                label="Number of Decoding frames",
                minimum=1,
                maximum=num_frames,
                step=1,
            )
            min_guidance_slider = gr.Slider(
                value=3.5,
                label="Min CFG Value",
                minimum=0.05,
                maximum=0.5,
                step=0.05,
            )
            max_guidance_slider = gr.Slider(
                value=3.5,
                label="Max CFG Value",
                minimum=0.05,
                maximum=0.5,
                step=0.05,
            )
            run_button = gr.Button(value="Run V3D")

        with gr.Column():
            output_video = gr.Video(value=None, label="Output Orbit Video")

    @run_button.click(
        inputs=[
            input_image,
            border_ratio_slider,
            min_guidance_slider,
            max_guidance_slider,
            decoding_t_slider,
        ],
        outputs=[output_video],
    )
    def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
        model.sampler.guider.max_scale = max_cfg
        model.sampler.guider.min_scale = min_cfg
        return do_sample(
            image,
            num_frames,
            num_steps,
            int(decoding_t),
            border_ratio,
            False,
            output_folder,
        )


demo.launch()