Spaces:
Runtime error
Runtime error
File size: 5,418 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import argparse
import subprocess
from pathlib import Path
import os
import numpy as np
from skimage.io import imread, imsave
from transforms3d.quaternions import mat2quat
from colmap.database import COLMAPDatabase
from colmap.read_write_model import CAMERA_MODEL_NAMES
import open3d as o3d
# from ldm.base_utils import read_pickle
K, _, _, _, POSES = read_pickle(f'meta_info/camera-16.pkl')
H, W, NUM_IMAGES = 256, 256, 16
def extract_and_match_sift(colmap_path, database_path, image_dir):
cmd = [
str(colmap_path), 'feature_extractor',
'--database_path', str(database_path),
'--image_path', str(image_dir),
]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
cmd = [
str(colmap_path), 'exhaustive_matcher',
'--database_path', str(database_path),
]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def run_triangulation(colmap_path, model_path, in_sparse_model, database_path, image_dir):
print('Running the triangulation...')
model_path.mkdir(exist_ok=True, parents=True)
cmd = [
str(colmap_path), 'point_triangulator',
'--database_path', str(database_path),
'--image_path', str(image_dir),
'--input_path', str(in_sparse_model),
'--output_path', str(model_path),
'--Mapper.ba_refine_focal_length', '0',
'--Mapper.ba_refine_principal_point', '0',
'--Mapper.ba_refine_extra_params', '0']
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def run_patch_match(colmap_path, sparse_model: Path, image_dir: Path, dense_model: Path):
print('Running patch match...')
assert sparse_model.exists()
dense_model.mkdir(parents=True, exist_ok=True)
cmd = [str(colmap_path), 'image_undistorter', '--input_path', str(sparse_model), '--image_path', str(image_dir), '--output_path', str(dense_model),]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
cmd = [str(colmap_path), 'patch_match_stereo','--workspace_path', str(dense_model),]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def dump_images(in_image_dir, image_dir):
for index in range(NUM_IMAGES):
img = imread(f'{in_image_dir}/{index:03}.png')
imsave(f'{str(image_dir)}/{index:03}.png', img)
def build_db_known_poses_fixed(db_path, in_sparse_path):
db = COLMAPDatabase.connect(db_path)
db.create_tables()
# insert intrinsics
with open(f'{str(in_sparse_path)}/cameras.txt', 'w') as f:
for index in range(NUM_IMAGES):
fx, fy = K[0,0], K[1,1]
cx, cy = K[0,2], K[1,2]
model, width, height, params = CAMERA_MODEL_NAMES['PINHOLE'].model_id, W, H, np.array((fx, fy, cx, cy),np.float32)
db.add_camera(model, width, height, params, prior_focal_length=(fx+fy)/2, camera_id=index+1)
f.write(f'{index+1} PINHOLE {W} {H} {fx:.3f} {fy:.3f} {cx:.3f} {cy:.3f}\n')
with open(f'{str(in_sparse_path)}/images.txt','w') as f:
for index in range(NUM_IMAGES):
pose = POSES[index]
q = mat2quat(pose[:,:3])
t = pose[:,3]
img_id = db.add_image(f"{index:03}.png", camera_id=index+1, prior_q=q, prior_t=t)
f.write(f'{img_id} {q[0]:.5f} {q[1]:.5f} {q[2]:.5f} {q[3]:.5f} {t[0]:.5f} {t[1]:.5f} {t[2]:.5f} {index+1} {index:03}.png\n\n')
db.commit()
db.close()
with open(f'{in_sparse_path}/points3D.txt','w') as f:
f.write('\n')
def patch_match_with_known_poses(in_image_dir, project_dir, colmap_path='colmap'):
Path(project_dir).mkdir(exist_ok=True, parents=True)
if os.path.exists(f'{str(project_dir)}/dense/stereo/depth_maps'): return
# output poses
db_path = f'{str(project_dir)}/database.db'
image_dir = Path(f'{str(project_dir)}/images')
sparse_dir = Path(f'{str(project_dir)}/sparse')
in_sparse_dir = Path(f'{str(project_dir)}/sparse_in')
dense_dir = Path(f'{str(project_dir)}/dense')
image_dir.mkdir(exist_ok=True,parents=True)
sparse_dir.mkdir(exist_ok=True,parents=True)
in_sparse_dir.mkdir(exist_ok=True,parents=True)
dense_dir.mkdir(exist_ok=True,parents=True)
dump_images(in_image_dir, image_dir)
build_db_known_poses_fixed(db_path, in_sparse_dir)
extract_and_match_sift(colmap_path, db_path, image_dir)
run_triangulation(colmap_path,sparse_dir, in_sparse_dir, db_path, image_dir)
run_patch_match(colmap_path, sparse_dir, image_dir, dense_dir)
# fuse
cmd = [str(colmap_path), 'stereo_fusion',
'--workspace_path', f'{project_dir}/dense',
'--workspace_format', 'COLMAP',
'--input_type', 'geometric',
'--output_path', f'{project_dir}/points.ply',]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dir',type=str)
parser.add_argument('--project',type=str)
parser.add_argument('--name',type=str)
parser.add_argument('--colmap',type=str, default='colmap')
args = parser.parse_args()
if not os.path.exists(f'{args.project}/points.ply'):
patch_match_with_known_poses(args.dir, args.project, colmap_path=args.colmap)
mesh = o3d.io.read_triangle_mesh(f'{args.project}/points.ply',)
vn = len(mesh.vertices)
with open('colmap-results.log', 'a') as f:
f.write(f'{args.name}\t{vn}\n')
if __name__=="__main__":
main() |