File size: 4,626 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

from pathlib import Path
import os
from PIL import Image
import torch
import torchvision.transforms.functional as tf
from utils.loss_utils import ssim
from lpipsPyTorch import lpips
import json
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser


def readImages(renders_dir, gt_dir):
    renders = []
    gts = []
    image_names = []
    for fname in os.listdir(renders_dir):
        render = Image.open(renders_dir / fname)
        gt = Image.open(gt_dir / fname)
        renders.append(tf.to_tensor(render).unsqueeze(0)[:, :3, :, :].cuda())
        gts.append(tf.to_tensor(gt).unsqueeze(0)[:, :3, :, :].cuda())
        image_names.append(fname)
    return renders, gts, image_names


def evaluate(model_paths):

    full_dict = {}
    per_view_dict = {}
    full_dict_polytopeonly = {}
    per_view_dict_polytopeonly = {}
    print("")

    for scene_dir in model_paths:
        try:
            print("Scene:", scene_dir)
            full_dict[scene_dir] = {}
            per_view_dict[scene_dir] = {}
            full_dict_polytopeonly[scene_dir] = {}
            per_view_dict_polytopeonly[scene_dir] = {}

            test_dir = Path(scene_dir) / "test"

            for method in os.listdir(test_dir):
                print("Method:", method)

                full_dict[scene_dir][method] = {}
                per_view_dict[scene_dir][method] = {}
                full_dict_polytopeonly[scene_dir][method] = {}
                per_view_dict_polytopeonly[scene_dir][method] = {}

                method_dir = test_dir / method
                gt_dir = method_dir / "gt"
                renders_dir = method_dir / "renders"
                renders, gts, image_names = readImages(renders_dir, gt_dir)

                ssims = []
                psnrs = []
                lpipss = []

                for idx in tqdm(range(len(renders)), desc="Metric evaluation progress"):
                    ssims.append(ssim(renders[idx], gts[idx]))
                    psnrs.append(psnr(renders[idx], gts[idx]))
                    lpipss.append(lpips(renders[idx], gts[idx], net_type="vgg"))

                print("  SSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
                print("  PSNR : {:>12.7f}".format(torch.tensor(psnrs).mean(), ".5"))
                print("  LPIPS: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5"))
                print("")

                full_dict[scene_dir][method].update(
                    {
                        "SSIM": torch.tensor(ssims).mean().item(),
                        "PSNR": torch.tensor(psnrs).mean().item(),
                        "LPIPS": torch.tensor(lpipss).mean().item(),
                    }
                )
                per_view_dict[scene_dir][method].update(
                    {
                        "SSIM": {
                            name: ssim
                            for ssim, name in zip(
                                torch.tensor(ssims).tolist(), image_names
                            )
                        },
                        "PSNR": {
                            name: psnr
                            for psnr, name in zip(
                                torch.tensor(psnrs).tolist(), image_names
                            )
                        },
                        "LPIPS": {
                            name: lp
                            for lp, name in zip(
                                torch.tensor(lpipss).tolist(), image_names
                            )
                        },
                    }
                )

            with open(scene_dir + "/results.json", "w") as fp:
                json.dump(full_dict[scene_dir], fp, indent=True)
            with open(scene_dir + "/per_view.json", "w") as fp:
                json.dump(per_view_dict[scene_dir], fp, indent=True)
        except:
            print("Unable to compute metrics for model", scene_dir)


if __name__ == "__main__":
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)

    # Set up command line argument parser
    parser = ArgumentParser(description="Training script parameters")
    parser.add_argument(
        "--model_paths", "-m", required=True, nargs="+", type=str, default=[]
    )
    args = parser.parse_args()
    evaluate(args.model_paths)