File size: 11,119 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import math
import os
from glob import glob
from pathlib import Path
from typing import Optional

import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
import tyro
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor
from mediapy import write_video
import rembg
from kiui.op import recenter
from safetensors.torch import load_file as load_safetensors
from typing import Any

from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config


def get_unique_embedder_keys_from_conditioner(conditioner):
    return list(set([x.input_key for x in conditioner.embedders]))


def get_batch(keys, value_dict, N, T, device):
    batch = {}
    batch_uc = {}

    for key in keys:
        if key == "fps_id":
            batch[key] = (
                torch.tensor([value_dict["fps_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "motion_bucket_id":
            batch[key] = (
                torch.tensor([value_dict["motion_bucket_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "cond_aug":
            batch[key] = repeat(
                torch.tensor([value_dict["cond_aug"]]).to(device),
                "1 -> b",
                b=math.prod(N),
            )
        elif key == "cond_frames":
            batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
        elif key == "cond_frames_without_noise":
            batch[key] = repeat(
                value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
            )
        else:
            batch[key] = value_dict[key]

    if T is not None:
        batch["num_video_frames"] = T

    for key in batch.keys():
        if key not in batch_uc and isinstance(batch[key], torch.Tensor):
            batch_uc[key] = torch.clone(batch[key])
    return batch, batch_uc


def load_model(
    config: str,
    device: str,
    num_frames: int,
    num_steps: int,
    ckpt_path: Optional[str] = None,
    min_cfg: Optional[float] = None,
    max_cfg: Optional[float] = None,
    sigma_max: Optional[float] = None,
):
    config = OmegaConf.load(config)

    config.model.params.sampler_config.params.num_steps = num_steps
    config.model.params.sampler_config.params.guider_config.params.num_frames = (
        num_frames
    )
    if max_cfg is not None:
        config.model.params.sampler_config.params.guider_config.params.max_scale = (
            max_cfg
        )
    if min_cfg is not None:
        config.model.params.sampler_config.params.guider_config.params.min_scale = (
            min_cfg
        )
    if sigma_max is not None:
        print("Overriding sigma_max to ", sigma_max)
        config.model.params.sampler_config.params.discretization_config.params.sigma_max = (
            sigma_max
        )

    config.model.params.from_scratch = False

    if ckpt_path is not None:
        config.model.params.ckpt_path = str(ckpt_path)
    if device == "cuda":
        with torch.device(device):
            model = instantiate_from_config(config.model).to(device).eval()
    else:
        model = instantiate_from_config(config.model).to(device).eval()

    return model, None


def sample_one(
    input_path: str = "assets/test_image.png",  # Can either be image file or folder with image files
    checkpoint_path: Optional[str] = None,
    num_frames: Optional[int] = None,
    num_steps: Optional[int] = None,
    fps_id: int = 1,
    motion_bucket_id: int = 300,
    cond_aug: float = 0.02,
    seed: int = 23,
    decoding_t: int = 24,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
    device: str = "cuda",
    output_folder: Optional[str] = None,
    noise: torch.Tensor = None,
    save: bool = False,
    cached_model: Any = None,
    border_ratio: float = 0.3,
    min_guidance_scale: float = 3.5,
    max_guidance_scale: float = 3.5,
    sigma_max: float = None,
    ignore_alpha: bool = False,
):
    model_config = "scripts/pub/configs/V3D_512.yaml"
    num_frames = OmegaConf.load(
        model_config
    ).model.params.sampler_config.params.guider_config.params.num_frames
    print("Detected num_frames:", num_frames)
    num_steps = default(num_steps, 25)
    output_folder = default(output_folder, f"outputs/V3D_512")
    decoding_t = min(decoding_t, num_frames)

    sd = load_safetensors("./ckpts/svd_xt.safetensors")
    clip_model_config = OmegaConf.load("configs/embedder/clip_image.yaml")
    clip_model = instantiate_from_config(clip_model_config).eval()
    clip_sd = dict()
    for k, v in sd.items():
        if "conditioner.embedders.0" in k:
            clip_sd[k.replace("conditioner.embedders.0.", "")] = v
    clip_model.load_state_dict(clip_sd)
    clip_model = clip_model.to(device)

    ae_model_config = OmegaConf.load("configs/ae/video.yaml")
    ae_model = instantiate_from_config(ae_model_config).eval()
    encoder_sd = dict()
    for k, v in sd.items():
        if "first_stage_model" in k:
            encoder_sd[k.replace("first_stage_model.", "")] = v
    ae_model.load_state_dict(encoder_sd)
    ae_model = ae_model.to(device)

    if cached_model is None:
        model, filter = load_model(
            model_config,
            device,
            num_frames,
            num_steps,
            ckpt_path=checkpoint_path,
            min_cfg=min_guidance_scale,
            max_cfg=max_guidance_scale,
            sigma_max=sigma_max,
        )
    else:
        model = cached_model
    torch.manual_seed(seed)

    need_return = True
    path = Path(input_path)
    if path.is_file():
        if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
            all_img_paths = [input_path]
        else:
            raise ValueError("Path is not valid image file.")
    elif path.is_dir():
        all_img_paths = sorted(
            [
                f
                for f in path.iterdir()
                if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
            ]
        )
        need_return = False
        if len(all_img_paths) == 0:
            raise ValueError("Folder does not contain any images.")
    else:
        raise ValueError

    for input_path in all_img_paths:
        with Image.open(input_path) as image:
            # if image.mode == "RGBA":
            #     image = image.convert("RGB")
            w, h = image.size

            if border_ratio > 0:
                if image.mode != "RGBA" or ignore_alpha:
                    image = image.convert("RGB")
                    image = np.asarray(image)
                    carved_image = rembg.remove(image)  # [H, W, 4]
                else:
                    image = np.asarray(image)
                    carved_image = image
                mask = carved_image[..., -1] > 0
                image = recenter(carved_image, mask, border_ratio=border_ratio)
                image = image.astype(np.float32) / 255.0
                if image.shape[-1] == 4:
                    image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
                image = Image.fromarray((image * 255).astype(np.uint8))
            else:
                print("Ignore border ratio")
            image = image.resize((512, 512))

            image = ToTensor()(image)
            image = image * 2.0 - 1.0

        image = image.unsqueeze(0).to(device)
        H, W = image.shape[2:]
        assert image.shape[1] == 3
        F = 8
        C = 4
        shape = (num_frames, C, H // F, W // F)

        value_dict = {}
        value_dict["motion_bucket_id"] = motion_bucket_id
        value_dict["fps_id"] = fps_id
        value_dict["cond_aug"] = cond_aug
        value_dict["cond_frames_without_noise"] = clip_model(image)
        value_dict["cond_frames"] = ae_model.encode(image)
        value_dict["cond_frames"] += cond_aug * torch.randn_like(
            value_dict["cond_frames"]
        )
        value_dict["cond_aug"] = cond_aug

        with torch.no_grad():
            with torch.autocast(device):
                batch, batch_uc = get_batch(
                    get_unique_embedder_keys_from_conditioner(model.conditioner),
                    value_dict,
                    [1, num_frames],
                    T=num_frames,
                    device=device,
                )
                c, uc = model.conditioner.get_unconditional_conditioning(
                    batch,
                    batch_uc=batch_uc,
                    force_uc_zero_embeddings=[
                        "cond_frames",
                        "cond_frames_without_noise",
                    ],
                )

                for k in ["crossattn", "concat"]:
                    uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                    uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                    c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                    c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

                randn = torch.randn(shape, device=device) if noise is None else noise
                randn = randn.to(device)

                additional_model_inputs = {}
                additional_model_inputs["image_only_indicator"] = torch.zeros(
                    2, num_frames
                ).to(device)
                additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

                def denoiser(input, sigma, c):
                    return model.denoiser(
                        model.model, input, sigma, c, **additional_model_inputs
                    )

                samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
                model.en_and_decode_n_samples_a_time = decoding_t
                samples_x = model.decode_first_stage(samples_z)
                samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

                os.makedirs(output_folder, exist_ok=True)
                base_count = len(glob(os.path.join(output_folder, "*.mp4")))
                video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
                # writer = cv2.VideoWriter(
                #     video_path,
                #     cv2.VideoWriter_fourcc(*"MP4V"),
                #     fps_id + 1,
                #     (samples.shape[-1], samples.shape[-2]),
                # )

                frames = (
                    (rearrange(samples, "t c h w -> t h w c") * 255)
                    .cpu()
                    .numpy()
                    .astype(np.uint8)
                )

                if save:
                    write_video(video_path, frames, fps=3)

                images = []
                for frame in frames:
                    images.append(Image.fromarray(frame))

                if need_return:
                    return images, model


if __name__ == "__main__":
    tyro.cli(sample_one)