Spaces:
Runtime error
Runtime error
File size: 11,119 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import math
import os
from glob import glob
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
import tyro
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor
from mediapy import write_video
import rembg
from kiui.op import recenter
from safetensors.torch import load_file as load_safetensors
from typing import Any
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def load_model(
config: str,
device: str,
num_frames: int,
num_steps: int,
ckpt_path: Optional[str] = None,
min_cfg: Optional[float] = None,
max_cfg: Optional[float] = None,
sigma_max: Optional[float] = None,
):
config = OmegaConf.load(config)
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
if max_cfg is not None:
config.model.params.sampler_config.params.guider_config.params.max_scale = (
max_cfg
)
if min_cfg is not None:
config.model.params.sampler_config.params.guider_config.params.min_scale = (
min_cfg
)
if sigma_max is not None:
print("Overriding sigma_max to ", sigma_max)
config.model.params.sampler_config.params.discretization_config.params.sigma_max = (
sigma_max
)
config.model.params.from_scratch = False
if ckpt_path is not None:
config.model.params.ckpt_path = str(ckpt_path)
if device == "cuda":
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()
else:
model = instantiate_from_config(config.model).to(device).eval()
return model, None
def sample_one(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
checkpoint_path: Optional[str] = None,
num_frames: Optional[int] = None,
num_steps: Optional[int] = None,
fps_id: int = 1,
motion_bucket_id: int = 300,
cond_aug: float = 0.02,
seed: int = 23,
decoding_t: int = 24, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: Optional[str] = None,
noise: torch.Tensor = None,
save: bool = False,
cached_model: Any = None,
border_ratio: float = 0.3,
min_guidance_scale: float = 3.5,
max_guidance_scale: float = 3.5,
sigma_max: float = None,
ignore_alpha: bool = False,
):
model_config = "scripts/pub/configs/V3D_512.yaml"
num_frames = OmegaConf.load(
model_config
).model.params.sampler_config.params.guider_config.params.num_frames
print("Detected num_frames:", num_frames)
num_steps = default(num_steps, 25)
output_folder = default(output_folder, f"outputs/V3D_512")
decoding_t = min(decoding_t, num_frames)
sd = load_safetensors("./ckpts/svd_xt.safetensors")
clip_model_config = OmegaConf.load("configs/embedder/clip_image.yaml")
clip_model = instantiate_from_config(clip_model_config).eval()
clip_sd = dict()
for k, v in sd.items():
if "conditioner.embedders.0" in k:
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
clip_model.load_state_dict(clip_sd)
clip_model = clip_model.to(device)
ae_model_config = OmegaConf.load("configs/ae/video.yaml")
ae_model = instantiate_from_config(ae_model_config).eval()
encoder_sd = dict()
for k, v in sd.items():
if "first_stage_model" in k:
encoder_sd[k.replace("first_stage_model.", "")] = v
ae_model.load_state_dict(encoder_sd)
ae_model = ae_model.to(device)
if cached_model is None:
model, filter = load_model(
model_config,
device,
num_frames,
num_steps,
ckpt_path=checkpoint_path,
min_cfg=min_guidance_scale,
max_cfg=max_guidance_scale,
sigma_max=sigma_max,
)
else:
model = cached_model
torch.manual_seed(seed)
need_return = True
path = Path(input_path)
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
need_return = False
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
for input_path in all_img_paths:
with Image.open(input_path) as image:
# if image.mode == "RGBA":
# image = image.convert("RGB")
w, h = image.size
if border_ratio > 0:
if image.mode != "RGBA" or ignore_alpha:
image = image.convert("RGB")
image = np.asarray(image)
carved_image = rembg.remove(image) # [H, W, 4]
else:
image = np.asarray(image)
carved_image = image
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=border_ratio)
image = image.astype(np.float32) / 255.0
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
image = Image.fromarray((image * 255).astype(np.uint8))
else:
print("Ignore border ratio")
image = image.resize((512, 512))
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
value_dict = {}
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = clip_model(image)
value_dict["cond_frames"] = ae_model.encode(image)
value_dict["cond_frames"] += cond_aug * torch.randn_like(
value_dict["cond_frames"]
)
value_dict["cond_aug"] = cond_aug
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device) if noise is None else noise
randn = randn.to(device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# writer = cv2.VideoWriter(
# video_path,
# cv2.VideoWriter_fourcc(*"MP4V"),
# fps_id + 1,
# (samples.shape[-1], samples.shape[-2]),
# )
frames = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
if save:
write_video(video_path, frames, fps=3)
images = []
for frame in frames:
images.append(Image.fromarray(frame))
if need_return:
return images, model
if __name__ == "__main__":
tyro.cli(sample_one)
|