Spaces:
Runtime error
Runtime error
model: | |
base_learning_rate: 1.0e-4 | |
target: sgm.models.diffusion.DiffusionEngine | |
params: | |
scale_factor: 0.13025 | |
disable_first_stage_autocast: True | |
log_keys: | |
- txt | |
scheduler_config: | |
target: sgm.lr_scheduler.LambdaLinearScheduler | |
params: | |
warm_up_steps: [10000] | |
cycle_lengths: [10000000000000] | |
f_start: [1.e-6] | |
f_max: [1.] | |
f_min: [1.] | |
denoiser_config: | |
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser | |
params: | |
num_idx: 1000 | |
scaling_config: | |
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
network_config: | |
target: sgm.modules.diffusionmodules.openaimodel.UNetModel | |
params: | |
use_checkpoint: True | |
in_channels: 4 | |
out_channels: 4 | |
model_channels: 320 | |
attention_resolutions: [1, 2, 4] | |
num_res_blocks: 2 | |
channel_mult: [1, 2, 4, 4] | |
num_head_channels: 64 | |
num_classes: sequential | |
adm_in_channels: 1792 | |
num_heads: 1 | |
transformer_depth: 1 | |
context_dim: 768 | |
spatial_transformer_attn_type: softmax-xformers | |
conditioner_config: | |
target: sgm.modules.GeneralConditioner | |
params: | |
emb_models: | |
- is_trainable: True | |
input_key: txt | |
ucg_rate: 0.1 | |
legacy_ucg_value: "" | |
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder | |
params: | |
always_return_pooled: True | |
- is_trainable: False | |
ucg_rate: 0.1 | |
input_key: original_size_as_tuple | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 | |
- is_trainable: False | |
input_key: crop_coords_top_left | |
ucg_rate: 0.1 | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 | |
first_stage_config: | |
target: sgm.models.autoencoder.AutoencoderKL | |
params: | |
ckpt_path: CKPT_PATH | |
embed_dim: 4 | |
monitor: val/rec_loss | |
ddconfig: | |
attn_type: vanilla-xformers | |
double_z: true | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [ 1, 2, 4, 4 ] | |
num_res_blocks: 2 | |
attn_resolutions: [ ] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
loss_fn_config: | |
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss | |
params: | |
loss_weighting_config: | |
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting | |
sigma_sampler_config: | |
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling | |
params: | |
num_idx: 1000 | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
sampler_config: | |
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler | |
params: | |
num_steps: 50 | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
guider_config: | |
target: sgm.modules.diffusionmodules.guiders.VanillaCFG | |
params: | |
scale: 7.5 | |
data: | |
target: sgm.data.dataset.StableDataModuleFromConfig | |
params: | |
train: | |
datapipeline: | |
urls: | |
# USER: adapt this path the root of your custom dataset | |
- DATA_PATH | |
pipeline_config: | |
shardshuffle: 10000 | |
sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM | |
decoders: | |
- pil | |
postprocessors: | |
- target: sdata.mappers.TorchVisionImageTransforms | |
params: | |
key: jpg # USER: you might wanna adapt this for your custom dataset | |
transforms: | |
- target: torchvision.transforms.Resize | |
params: | |
size: 256 | |
interpolation: 3 | |
- target: torchvision.transforms.ToTensor | |
- target: sdata.mappers.Rescaler | |
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare | |
# USER: you might wanna use non-default parameters due to your custom dataset | |
loader: | |
batch_size: 64 | |
num_workers: 6 | |
lightning: | |
modelcheckpoint: | |
params: | |
every_n_train_steps: 5000 | |
callbacks: | |
metrics_over_trainsteps_checkpoint: | |
params: | |
every_n_train_steps: 25000 | |
image_logger: | |
target: main.ImageLogger | |
params: | |
disabled: False | |
enable_autocast: False | |
batch_frequency: 1000 | |
max_images: 8 | |
increase_log_steps: True | |
log_first_step: False | |
log_images_kwargs: | |
use_ema_scope: False | |
N: 8 | |
n_rows: 2 | |
trainer: | |
devices: 0, | |
benchmark: True | |
num_sanity_val_steps: 0 | |
accumulate_grad_batches: 1 | |
max_epochs: 1000 |