Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import models | |
from models.base import BaseModel | |
from models.utils import chunk_batch | |
from systems.utils import update_module_step | |
from nerfacc import ( | |
ContractionType, | |
OccupancyGrid, | |
ray_marching, | |
render_weight_from_density, | |
render_weight_from_alpha, | |
accumulate_along_rays, | |
) | |
from nerfacc.intersection import ray_aabb_intersect | |
import pdb | |
class VarianceNetwork(nn.Module): | |
def __init__(self, config): | |
super(VarianceNetwork, self).__init__() | |
self.config = config | |
self.init_val = self.config.init_val | |
self.register_parameter( | |
"variance", nn.Parameter(torch.tensor(self.config.init_val)) | |
) | |
self.modulate = self.config.get("modulate", False) | |
if self.modulate: | |
self.mod_start_steps = self.config.mod_start_steps | |
self.reach_max_steps = self.config.reach_max_steps | |
self.max_inv_s = self.config.max_inv_s | |
def inv_s(self): | |
val = torch.exp(self.variance * 10.0) | |
if self.modulate and self.do_mod: | |
val = val.clamp_max(self.mod_val) | |
return val | |
def forward(self, x): | |
return torch.ones([len(x), 1], device=self.variance.device) * self.inv_s | |
def update_step(self, epoch, global_step): | |
if self.modulate: | |
self.do_mod = global_step > self.mod_start_steps | |
if not self.do_mod: | |
self.prev_inv_s = self.inv_s.item() | |
else: | |
self.mod_val = min( | |
(global_step / self.reach_max_steps) | |
* (self.max_inv_s - self.prev_inv_s) | |
+ self.prev_inv_s, | |
self.max_inv_s, | |
) | |
class NeuSModel(BaseModel): | |
def setup(self): | |
self.geometry = models.make(self.config.geometry.name, self.config.geometry) | |
self.texture = models.make(self.config.texture.name, self.config.texture) | |
self.geometry.contraction_type = ContractionType.AABB | |
if self.config.learned_background: | |
self.geometry_bg = models.make( | |
self.config.geometry_bg.name, self.config.geometry_bg | |
) | |
self.texture_bg = models.make( | |
self.config.texture_bg.name, self.config.texture_bg | |
) | |
self.geometry_bg.contraction_type = ContractionType.UN_BOUNDED_SPHERE | |
self.near_plane_bg, self.far_plane_bg = 0.1, 1e3 | |
self.cone_angle_bg = ( | |
10 | |
** (math.log10(self.far_plane_bg) / self.config.num_samples_per_ray_bg) | |
- 1.0 | |
) | |
self.render_step_size_bg = 0.01 | |
self.variance = VarianceNetwork(self.config.variance) | |
self.register_buffer( | |
"scene_aabb", | |
torch.as_tensor( | |
[ | |
-self.config.radius, | |
-self.config.radius, | |
-self.config.radius, | |
self.config.radius, | |
self.config.radius, | |
self.config.radius, | |
], | |
dtype=torch.float32, | |
), | |
) | |
if self.config.grid_prune: | |
self.occupancy_grid = OccupancyGrid( | |
roi_aabb=self.scene_aabb, | |
resolution=128, | |
contraction_type=ContractionType.AABB, | |
) | |
if self.config.learned_background: | |
self.occupancy_grid_bg = OccupancyGrid( | |
roi_aabb=self.scene_aabb, | |
resolution=256, | |
contraction_type=ContractionType.UN_BOUNDED_SPHERE, | |
) | |
self.randomized = self.config.randomized | |
self.background_color = None | |
self.render_step_size = ( | |
1.732 * 2 * self.config.radius / self.config.num_samples_per_ray | |
) | |
def update_step(self, epoch, global_step): | |
update_module_step(self.geometry, epoch, global_step) | |
update_module_step(self.texture, epoch, global_step) | |
if self.config.learned_background: | |
update_module_step(self.geometry_bg, epoch, global_step) | |
update_module_step(self.texture_bg, epoch, global_step) | |
update_module_step(self.variance, epoch, global_step) | |
cos_anneal_end = self.config.get("cos_anneal_end", 0) | |
self.cos_anneal_ratio = ( | |
1.0 if cos_anneal_end == 0 else min(1.0, global_step / cos_anneal_end) | |
) | |
def occ_eval_fn(x): | |
sdf = self.geometry(x, with_grad=False, with_feature=False) | |
inv_s = self.variance(torch.zeros([1, 3]))[:, :1].clip(1e-6, 1e6) | |
inv_s = inv_s.expand(sdf.shape[0], 1) | |
estimated_next_sdf = sdf[..., None] - self.render_step_size * 0.5 | |
estimated_prev_sdf = sdf[..., None] + self.render_step_size * 0.5 | |
prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s) | |
next_cdf = torch.sigmoid(estimated_next_sdf * inv_s) | |
p = prev_cdf - next_cdf | |
c = prev_cdf | |
alpha = ((p + 1e-5) / (c + 1e-5)).view(-1, 1).clip(0.0, 1.0) | |
return alpha | |
def occ_eval_fn_bg(x): | |
density, _ = self.geometry_bg(x) | |
# approximate for 1 - torch.exp(-density[...,None] * self.render_step_size_bg) based on taylor series | |
return density[..., None] * self.render_step_size_bg | |
if self.training and self.config.grid_prune: | |
self.occupancy_grid.every_n_step( | |
step=global_step, | |
occ_eval_fn=occ_eval_fn, | |
occ_thre=self.config.get("grid_prune_occ_thre", 0.01), | |
) | |
if self.config.learned_background: | |
self.occupancy_grid_bg.every_n_step( | |
step=global_step, | |
occ_eval_fn=occ_eval_fn_bg, | |
occ_thre=self.config.get("grid_prune_occ_thre_bg", 0.01), | |
) | |
def isosurface(self): | |
mesh = self.geometry.isosurface() | |
return mesh | |
def get_alpha(self, sdf, normal, dirs, dists): | |
inv_s = self.variance(torch.zeros([1, 3]))[:, :1].clip( | |
1e-6, 1e6 | |
) # Single parameter | |
inv_s = inv_s.expand(sdf.shape[0], 1) | |
true_cos = (dirs * normal).sum(-1, keepdim=True) | |
# "cos_anneal_ratio" grows from 0 to 1 in the beginning training iterations. The anneal strategy below makes | |
# the cos value "not dead" at the beginning training iterations, for better convergence. | |
iter_cos = -( | |
F.relu(-true_cos * 0.5 + 0.5) * (1.0 - self.cos_anneal_ratio) | |
+ F.relu(-true_cos) * self.cos_anneal_ratio | |
) # always non-positive | |
# Estimate signed distances at section points | |
estimated_next_sdf = sdf[..., None] + iter_cos * dists.reshape(-1, 1) * 0.5 | |
estimated_prev_sdf = sdf[..., None] - iter_cos * dists.reshape(-1, 1) * 0.5 | |
prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s) | |
next_cdf = torch.sigmoid(estimated_next_sdf * inv_s) | |
p = prev_cdf - next_cdf | |
c = prev_cdf | |
alpha = ((p + 1e-5) / (c + 1e-5)).view(-1).clip(0.0, 1.0) | |
return alpha | |
def forward_bg_(self, rays): | |
n_rays = rays.shape[0] | |
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3) | |
def sigma_fn(t_starts, t_ends, ray_indices): | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0 | |
density, _ = self.geometry_bg(positions) | |
return density[..., None] | |
_, t_max = ray_aabb_intersect(rays_o, rays_d, self.scene_aabb) | |
# if the ray intersects with the bounding box, start from the farther intersection point | |
# otherwise start from self.far_plane_bg | |
# note that in nerfacc t_max is set to 1e10 if there is no intersection | |
near_plane = torch.where(t_max > 1e9, self.near_plane_bg, t_max) | |
with torch.no_grad(): | |
ray_indices, t_starts, t_ends = ray_marching( | |
rays_o, | |
rays_d, | |
scene_aabb=None, | |
grid=self.occupancy_grid_bg if self.config.grid_prune else None, | |
sigma_fn=sigma_fn, | |
near_plane=near_plane, | |
far_plane=self.far_plane_bg, | |
render_step_size=self.render_step_size_bg, | |
stratified=self.randomized, | |
cone_angle=self.cone_angle_bg, | |
alpha_thre=0.0, | |
) | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
midpoints = (t_starts + t_ends) / 2.0 | |
positions = t_origins + t_dirs * midpoints | |
intervals = t_ends - t_starts | |
density, feature = self.geometry_bg(positions) | |
rgb = self.texture_bg(feature, t_dirs) | |
weights = render_weight_from_density( | |
t_starts, t_ends, density[..., None], ray_indices=ray_indices, n_rays=n_rays | |
) | |
opacity = accumulate_along_rays( | |
weights, ray_indices, values=None, n_rays=n_rays | |
) | |
depth = accumulate_along_rays( | |
weights, ray_indices, values=midpoints, n_rays=n_rays | |
) | |
comp_rgb = accumulate_along_rays( | |
weights, ray_indices, values=rgb, n_rays=n_rays | |
) | |
comp_rgb = comp_rgb + self.background_color * (1.0 - opacity) | |
out = { | |
"comp_rgb": comp_rgb, | |
"opacity": opacity, | |
"depth": depth, | |
"rays_valid": opacity > 0, | |
"num_samples": torch.as_tensor( | |
[len(t_starts)], dtype=torch.int32, device=rays.device | |
), | |
} | |
if self.training: | |
out.update( | |
{ | |
"weights": weights.view(-1), | |
"points": midpoints.view(-1), | |
"intervals": intervals.view(-1), | |
"ray_indices": ray_indices.view(-1), | |
} | |
) | |
return out | |
def forward_(self, rays): | |
n_rays = rays.shape[0] | |
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3) | |
with torch.no_grad(): | |
ray_indices, t_starts, t_ends = ray_marching( | |
rays_o, | |
rays_d, | |
scene_aabb=self.scene_aabb, | |
grid=self.occupancy_grid if self.config.grid_prune else None, | |
alpha_fn=None, | |
near_plane=None, | |
far_plane=None, | |
render_step_size=self.render_step_size, | |
stratified=self.randomized, | |
cone_angle=0.0, | |
alpha_thre=0.0, | |
) | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
midpoints = (t_starts + t_ends) / 2.0 | |
positions = t_origins + t_dirs * midpoints | |
dists = t_ends - t_starts | |
if self.config.geometry.grad_type == "finite_difference": | |
sdf, sdf_grad, feature, sdf_laplace = self.geometry( | |
positions, with_grad=True, with_feature=True, with_laplace=True | |
) | |
else: | |
sdf, sdf_grad, feature = self.geometry( | |
positions, with_grad=True, with_feature=True | |
) | |
normal = F.normalize(sdf_grad, p=2, dim=-1) | |
alpha = self.get_alpha(sdf, normal, t_dirs, dists)[..., None] | |
rgb = self.texture(feature, t_dirs, normal) | |
weights = render_weight_from_alpha( | |
alpha, ray_indices=ray_indices, n_rays=n_rays | |
) | |
opacity = accumulate_along_rays( | |
weights, ray_indices, values=None, n_rays=n_rays | |
) | |
depth = accumulate_along_rays( | |
weights, ray_indices, values=midpoints, n_rays=n_rays | |
) | |
comp_rgb = accumulate_along_rays( | |
weights, ray_indices, values=rgb, n_rays=n_rays | |
) | |
comp_normal = accumulate_along_rays( | |
weights, ray_indices, values=normal, n_rays=n_rays | |
) | |
comp_normal = F.normalize(comp_normal, p=2, dim=-1) | |
pts_random = ( | |
torch.rand([1024 * 2, 3]).to(sdf.dtype).to(sdf.device) * 2 - 1 | |
) # normalized to (-1, 1) | |
if self.config.geometry.grad_type == "finite_difference": | |
random_sdf, random_sdf_grad, _ = self.geometry( | |
pts_random, with_grad=True, with_feature=False, with_laplace=True | |
) | |
_, normal_perturb, _ = self.geometry( | |
pts_random + torch.randn_like(pts_random) * 1e-2, | |
with_grad=True, | |
with_feature=False, | |
with_laplace=True, | |
) | |
else: | |
random_sdf, random_sdf_grad = self.geometry( | |
pts_random, with_grad=True, with_feature=False | |
) | |
_, normal_perturb = self.geometry( | |
positions + torch.randn_like(positions) * 1e-2, | |
with_grad=True, | |
with_feature=False, | |
) | |
# pdb.set_trace() | |
out = { | |
"comp_rgb": comp_rgb, | |
"comp_normal": comp_normal, | |
"opacity": opacity, | |
"depth": depth, | |
"rays_valid": opacity > 0, | |
"num_samples": torch.as_tensor( | |
[len(t_starts)], dtype=torch.int32, device=rays.device | |
), | |
} | |
if self.training: | |
out.update( | |
{ | |
"sdf_samples": sdf, | |
"sdf_grad_samples": sdf_grad, | |
"random_sdf": random_sdf, | |
"random_sdf_grad": random_sdf_grad, | |
"normal_perturb": normal_perturb, | |
"weights": weights.view(-1), | |
"points": midpoints.view(-1), | |
"intervals": dists.view(-1), | |
"ray_indices": ray_indices.view(-1), | |
} | |
) | |
if self.config.geometry.grad_type == "finite_difference": | |
out.update({"sdf_laplace_samples": sdf_laplace}) | |
if self.config.learned_background: | |
out_bg = self.forward_bg_(rays) | |
else: | |
out_bg = { | |
"comp_rgb": self.background_color[None, :].expand(*comp_rgb.shape), | |
"num_samples": torch.zeros_like(out["num_samples"]), | |
"rays_valid": torch.zeros_like(out["rays_valid"]), | |
} | |
out_full = { | |
"comp_rgb": out["comp_rgb"] + out_bg["comp_rgb"] * (1.0 - out["opacity"]), | |
"num_samples": out["num_samples"] + out_bg["num_samples"], | |
"rays_valid": out["rays_valid"] | out_bg["rays_valid"], | |
} | |
return { | |
**out, | |
**{k + "_bg": v for k, v in out_bg.items()}, | |
**{k + "_full": v for k, v in out_full.items()}, | |
} | |
def forward(self, rays): | |
if self.training: | |
out = self.forward_(rays) | |
else: | |
out = chunk_batch(self.forward_, self.config.ray_chunk, True, rays) | |
return {**out, "inv_s": self.variance.inv_s} | |
def train(self, mode=True): | |
self.randomized = mode and self.config.randomized | |
return super().train(mode=mode) | |
def eval(self): | |
self.randomized = False | |
return super().eval() | |
def regularizations(self, out): | |
losses = {} | |
losses.update(self.geometry.regularizations(out)) | |
losses.update(self.texture.regularizations(out)) | |
return losses | |
def export(self, export_config): | |
mesh = self.isosurface() | |
if export_config.export_vertex_color: | |
_, sdf_grad, feature = chunk_batch( | |
self.geometry, | |
export_config.chunk_size, | |
False, | |
mesh["v_pos"].to(self.rank), | |
with_grad=True, | |
with_feature=True, | |
) | |
normal = F.normalize(sdf_grad, p=2, dim=-1) | |
rgb = self.texture( | |
feature, -normal, normal | |
) # set the viewing directions to the normal to get "albedo" | |
mesh["v_rgb"] = rgb.cpu() | |
return mesh | |