heheyas
init
cfb7702
raw
history blame
6.47 kB
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from ...modules.autoencoding.lpips.loss.lpips import LPIPS
from ...modules.encoders.modules import GeneralConditioner
from ...util import append_dims, instantiate_from_config
from .denoiser import Denoiser
class StandardDiffusionLoss(nn.Module):
def __init__(
self,
sigma_sampler_config: dict,
loss_weighting_config: dict,
loss_type: str = "l2",
offset_noise_level: float = 0.0,
batch2model_keys: Optional[Union[str, List[str]]] = None,
):
super().__init__()
assert loss_type in ["l2", "l1", "lpips"]
self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
self.loss_weighting = instantiate_from_config(loss_weighting_config)
self.loss_type = loss_type
self.offset_noise_level = offset_noise_level
if loss_type == "lpips":
self.lpips = LPIPS().eval()
if not batch2model_keys:
batch2model_keys = []
if isinstance(batch2model_keys, str):
batch2model_keys = [batch2model_keys]
self.batch2model_keys = set(batch2model_keys)
def get_noised_input(
self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor
) -> torch.Tensor:
noised_input = input + noise * sigmas_bc
return noised_input
def forward(
self,
network: nn.Module,
denoiser: Denoiser,
conditioner: GeneralConditioner,
input: torch.Tensor,
batch: Dict,
return_model_output: bool = False,
) -> torch.Tensor:
cond = conditioner(batch)
# for video diffusion
if "num_video_frames" in batch:
num_frames = batch["num_video_frames"]
for k in ["crossattn", "concat"]:
cond[k] = repeat(cond[k], "b ... -> b t ...", t=num_frames)
cond[k] = rearrange(cond[k], "b t ... -> (b t) ...", t=num_frames)
return self._forward(network, denoiser, cond, input, batch, return_model_output)
def _forward(
self,
network: nn.Module,
denoiser: Denoiser,
cond: Dict,
input: torch.Tensor,
batch: Dict,
return_model_output: bool = False,
) -> Tuple[torch.Tensor, Dict]:
additional_model_inputs = {
key: batch[key] for key in self.batch2model_keys.intersection(batch)
}
sigmas = self.sigma_sampler(input.shape[0]).to(input)
noise = torch.randn_like(input)
if self.offset_noise_level > 0.0:
offset_shape = (
(input.shape[0], 1, input.shape[2])
if self.n_frames is not None
else (input.shape[0], input.shape[1])
)
noise = noise + self.offset_noise_level * append_dims(
torch.randn(offset_shape, device=input.device),
input.ndim,
)
sigmas_bc = append_dims(sigmas, input.ndim)
noised_input = self.get_noised_input(sigmas_bc, noise, input)
model_output = denoiser(
network, noised_input, sigmas, cond, **additional_model_inputs
)
w = append_dims(self.loss_weighting(sigmas), input.ndim)
if not return_model_output:
return self.get_loss(model_output, input, w)
else:
return self.get_loss(model_output, input, w), model_output
def get_loss(self, model_output, target, w):
if self.loss_type == "l2":
return torch.mean(
(w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
)
elif self.loss_type == "l1":
return torch.mean(
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
)
elif self.loss_type == "lpips":
loss = self.lpips(model_output, target).reshape(-1)
return loss
else:
raise NotImplementedError(f"Unknown loss type {self.loss_type}")
class StandardDiffusionLossWithPixelNeRFLoss(StandardDiffusionLoss):
def __init__(
self,
sigma_sampler_config: Dict,
loss_weighting_config: Dict,
loss_type: str = "l2",
offset_noise_level: float = 0,
batch2model_keys: str | List[str] | None = None,
pixelnerf_loss_weight: float = 1.0,
pixelnerf_loss_type: str = "l2",
):
super().__init__(
sigma_sampler_config,
loss_weighting_config,
loss_type,
offset_noise_level,
batch2model_keys,
)
self.pixelnerf_loss_weight = pixelnerf_loss_weight
self.pixelnerf_loss_type = pixelnerf_loss_type
def get_pixelnerf_loss(self, model_output, target):
if self.pixelnerf_loss_type == "l2":
return torch.mean(
((model_output - target) ** 2).reshape(target.shape[0], -1), 1
)
elif self.pixelnerf_loss_type == "l1":
return torch.mean(
((model_output - target).abs()).reshape(target.shape[0], -1), 1
)
elif self.pixelnerf_loss_type == "lpips":
loss = self.lpips(model_output, target).reshape(-1)
return loss
else:
raise NotImplementedError(f"Unknown loss type {self.loss_type}")
def forward(
self,
network: nn.Module,
denoiser: Denoiser,
conditioner: GeneralConditioner,
input: torch.Tensor,
batch: Dict,
return_model_output: bool = False,
) -> torch.Tensor:
cond = conditioner(batch)
return self._forward(network, denoiser, cond, input, batch, return_model_output)
def _forward(
self,
network: nn.Module,
denoiser: Denoiser,
cond: Dict,
input: torch.Tensor,
batch: Dict,
return_model_output: bool = False,
) -> Tuple[torch.Tensor | Dict]:
loss = super()._forward(
network, denoiser, cond, input, batch, return_model_output
)
pixelnerf_loss = self.get_pixelnerf_loss(
cond["rgb"], batch["pixelnerf_input"]["rgb"]
)
if not return_model_output:
return loss + self.pixelnerf_loss_weight * pixelnerf_loss
else:
return loss[0] + self.pixelnerf_loss_weight * pixelnerf_loss, loss[1]