Spaces:
Runtime error
Runtime error
# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Helper functions for visualizing outputs """ | |
from dataclasses import dataclass | |
# from utils.typing import * | |
from typing import * | |
import matplotlib | |
import torch | |
from jaxtyping import Bool, Float | |
from torch import Tensor | |
from utils import colors | |
Colormaps = Literal[ | |
"default", "turbo", "viridis", "magma", "inferno", "cividis", "gray", "pca" | |
] | |
class ColormapOptions: | |
"""Options for colormap""" | |
colormap: Colormaps = "default" | |
""" The colormap to use """ | |
normalize: bool = False | |
""" Whether to normalize the input tensor image """ | |
colormap_min: float = 0 | |
""" Minimum value for the output colormap """ | |
colormap_max: float = 1 | |
""" Maximum value for the output colormap """ | |
invert: bool = False | |
""" Whether to invert the output colormap """ | |
def apply_colormap( | |
image: Float[Tensor, "*bs channels"], | |
colormap_options: ColormapOptions = ColormapOptions(), | |
eps: float = 1e-9, | |
) -> Float[Tensor, "*bs rgb"]: | |
""" | |
Applies a colormap to a tensor image. | |
If single channel, applies a colormap to the image. | |
If 3 channel, treats the channels as RGB. | |
If more than 3 channel, applies a PCA reduction on the dimensions to 3 channels | |
Args: | |
image: Input tensor image. | |
eps: Epsilon value for numerical stability. | |
Returns: | |
Tensor with the colormap applied. | |
""" | |
# default for rgb images | |
if image.shape[-1] == 3: | |
return image | |
# rendering depth outputs | |
if image.shape[-1] == 1 and torch.is_floating_point(image): | |
output = image | |
if colormap_options.normalize: | |
output = output - torch.min(output) | |
output = output / (torch.max(output) + eps) | |
output = ( | |
output * (colormap_options.colormap_max - colormap_options.colormap_min) | |
+ colormap_options.colormap_min | |
) | |
output = torch.clip(output, 0, 1) | |
if colormap_options.invert: | |
output = 1 - output | |
return apply_float_colormap(output, colormap=colormap_options.colormap) | |
# rendering boolean outputs | |
if image.dtype == torch.bool: | |
return apply_boolean_colormap(image) | |
if image.shape[-1] > 3: | |
return apply_pca_colormap(image) | |
raise NotImplementedError | |
def apply_float_colormap( | |
image: Float[Tensor, "*bs 1"], colormap: Colormaps = "viridis" | |
) -> Float[Tensor, "*bs rgb"]: | |
"""Convert single channel to a color image. | |
Args: | |
image: Single channel image. | |
colormap: Colormap for image. | |
Returns: | |
Tensor: Colored image with colors in [0, 1] | |
""" | |
if colormap == "default": | |
colormap = "turbo" | |
image = torch.nan_to_num(image, 0) | |
if colormap == "gray": | |
return image.repeat(1, 1, 3) | |
image = image.clamp(0, 1) | |
image_long = (image * 255).long() | |
image_long_min = torch.min(image_long) | |
image_long_max = torch.max(image_long) | |
assert image_long_min >= 0, f"the min value is {image_long_min}" | |
assert image_long_max <= 255, f"the max value is {image_long_max}" | |
return torch.tensor(matplotlib.colormaps[colormap].colors, device=image.device)[ | |
image_long[..., 0] | |
] | |
def apply_depth_colormap( | |
depth: Float[Tensor, "*bs 1"], | |
accumulation: Optional[Float[Tensor, "*bs 1"]] = None, | |
near_plane: Optional[float] = None, | |
far_plane: Optional[float] = None, | |
colormap_options: ColormapOptions = ColormapOptions(), | |
) -> Float[Tensor, "*bs rgb"]: | |
"""Converts a depth image to color for easier analysis. | |
Args: | |
depth: Depth image. | |
accumulation: Ray accumulation used for masking vis. | |
near_plane: Closest depth to consider. If None, use min image value. | |
far_plane: Furthest depth to consider. If None, use max image value. | |
colormap: Colormap to apply. | |
Returns: | |
Colored depth image with colors in [0, 1] | |
""" | |
near_plane = near_plane or float(torch.min(depth)) | |
far_plane = far_plane or float(torch.max(depth)) | |
depth = (depth - near_plane) / (far_plane - near_plane + 1e-10) | |
depth = torch.clip(depth, 0, 1) | |
# depth = torch.nan_to_num(depth, nan=0.0) # TODO(ethan): remove this | |
colored_image = apply_colormap(depth, colormap_options=colormap_options) | |
if accumulation is not None: | |
colored_image = colored_image * accumulation + (1 - accumulation) | |
return colored_image | |
def apply_boolean_colormap( | |
image: Bool[Tensor, "*bs 1"], | |
true_color: Float[Tensor, "*bs rgb"] = colors.WHITE, | |
false_color: Float[Tensor, "*bs rgb"] = colors.BLACK, | |
) -> Float[Tensor, "*bs rgb"]: | |
"""Converts a depth image to color for easier analysis. | |
Args: | |
image: Boolean image. | |
true_color: Color to use for True. | |
false_color: Color to use for False. | |
Returns: | |
Colored boolean image | |
""" | |
colored_image = torch.ones(image.shape[:-1] + (3,)) | |
colored_image[image[..., 0], :] = true_color | |
colored_image[~image[..., 0], :] = false_color | |
return colored_image | |
def apply_pca_colormap(image: Float[Tensor, "*bs dim"]) -> Float[Tensor, "*bs rgb"]: | |
"""Convert feature image to 3-channel RGB via PCA. The first three principle | |
components are used for the color channels, with outlier rejection per-channel | |
Args: | |
image: image of arbitrary vectors | |
Returns: | |
Tensor: Colored image | |
""" | |
original_shape = image.shape | |
image = image.view(-1, image.shape[-1]) | |
_, _, v = torch.pca_lowrank(image) | |
image = torch.matmul(image, v[..., :3]) | |
d = torch.abs(image - torch.median(image, dim=0).values) | |
mdev = torch.median(d, dim=0).values | |
s = d / mdev | |
m = 3.0 # this is a hyperparam controlling how many std dev outside for outliers | |
rins = image[s[:, 0] < m, 0] | |
gins = image[s[:, 1] < m, 1] | |
bins = image[s[:, 2] < m, 2] | |
image[:, 0] -= rins.min() | |
image[:, 1] -= gins.min() | |
image[:, 2] -= bins.min() | |
image[:, 0] /= rins.max() - rins.min() | |
image[:, 1] /= gins.max() - gins.min() | |
image[:, 2] /= bins.max() - bins.min() | |
image = torch.clamp(image, 0, 1) | |
image_long = (image * 255).long() | |
image_long_min = torch.min(image_long) | |
image_long_max = torch.max(image_long) | |
assert image_long_min >= 0, f"the min value is {image_long_min}" | |
assert image_long_max <= 255, f"the max value is {image_long_max}" | |
return image.view(*original_shape[:-1], 3) | |