Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import os | |
import sys | |
from PIL import Image | |
from typing import NamedTuple | |
from scene.colmap_loader import ( | |
read_extrinsics_text, | |
read_intrinsics_text, | |
qvec2rotmat, | |
read_extrinsics_binary, | |
read_intrinsics_binary, | |
read_points3D_binary, | |
read_points3D_text, | |
) | |
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal | |
from utils.camera_utils import get_uniform_poses | |
import numpy as np | |
import json | |
from pathlib import Path | |
from plyfile import PlyData, PlyElement | |
from utils.sh_utils import SH2RGB | |
from scene.gaussian_model import BasicPointCloud | |
from scene.cameras import Camera | |
import torch | |
import rembg | |
import mcubes | |
import trimesh | |
class CameraInfo(NamedTuple): | |
uid: int | |
R: np.array | |
T: np.array | |
FovY: np.array | |
FovX: np.array | |
image: np.array | |
image_path: str | |
image_name: str | |
width: int | |
height: int | |
class SceneInfo(NamedTuple): | |
point_cloud: BasicPointCloud | |
train_cameras: list | |
test_cameras: list | |
nerf_normalization: dict | |
ply_path: str | |
def getNerfppNorm(cam_info): | |
def get_center_and_diag(cam_centers): | |
cam_centers = np.hstack(cam_centers) | |
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) | |
center = avg_cam_center | |
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) | |
diagonal = np.max(dist) | |
return center.flatten(), diagonal | |
cam_centers = [] | |
for cam in cam_info: | |
W2C = getWorld2View2(cam.R, cam.T) | |
C2W = np.linalg.inv(W2C) | |
cam_centers.append(C2W[:3, 3:4]) | |
center, diagonal = get_center_and_diag(cam_centers) | |
radius = diagonal * 1.1 | |
translate = -center | |
return {"translate": translate, "radius": radius} | |
def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder): | |
cam_infos = [] | |
for idx, key in enumerate(cam_extrinsics): | |
sys.stdout.write("\r") | |
# the exact output you're looking for: | |
sys.stdout.write("Reading camera {}/{}".format(idx + 1, len(cam_extrinsics))) | |
sys.stdout.flush() | |
extr = cam_extrinsics[key] | |
intr = cam_intrinsics[extr.camera_id] | |
height = intr.height | |
width = intr.width | |
uid = intr.id | |
R = np.transpose(qvec2rotmat(extr.qvec)) | |
T = np.array(extr.tvec) | |
if intr.model == "SIMPLE_PINHOLE": | |
focal_length_x = intr.params[0] | |
FovY = focal2fov(focal_length_x, height) | |
FovX = focal2fov(focal_length_x, width) | |
elif intr.model == "PINHOLE": | |
focal_length_x = intr.params[0] | |
focal_length_y = intr.params[1] | |
FovY = focal2fov(focal_length_y, height) | |
FovX = focal2fov(focal_length_x, width) | |
else: | |
assert ( | |
False | |
), "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" | |
image_path = os.path.join(images_folder, os.path.basename(extr.name)) | |
image_name = os.path.basename(image_path).split(".")[0] | |
image = Image.open(image_path) | |
cam_info = CameraInfo( | |
uid=uid, | |
R=R, | |
T=T, | |
FovY=FovY, | |
FovX=FovX, | |
image=image, | |
image_path=image_path, | |
image_name=image_name, | |
width=width, | |
height=height, | |
) | |
cam_infos.append(cam_info) | |
sys.stdout.write("\n") | |
return cam_infos | |
def fetchPly(path): | |
plydata = PlyData.read(path) | |
vertices = plydata["vertex"] | |
positions = np.vstack([vertices["x"], vertices["y"], vertices["z"]]).T | |
colors = np.vstack([vertices["red"], vertices["green"], vertices["blue"]]).T / 255.0 | |
normals = np.vstack([vertices["nx"], vertices["ny"], vertices["nz"]]).T | |
return BasicPointCloud(points=positions, colors=colors, normals=normals) | |
def storePly(path, xyz, rgb): | |
# Define the dtype for the structured array | |
dtype = [ | |
("x", "f4"), | |
("y", "f4"), | |
("z", "f4"), | |
("nx", "f4"), | |
("ny", "f4"), | |
("nz", "f4"), | |
("red", "u1"), | |
("green", "u1"), | |
("blue", "u1"), | |
] | |
normals = np.zeros_like(xyz) | |
elements = np.empty(xyz.shape[0], dtype=dtype) | |
attributes = np.concatenate((xyz, normals, rgb), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
# Create the PlyData object and write to file | |
vertex_element = PlyElement.describe(elements, "vertex") | |
ply_data = PlyData([vertex_element]) | |
ply_data.write(path) | |
def readColmapSceneInfo(path, images, eval, llffhold=8): | |
try: | |
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") | |
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") | |
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) | |
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) | |
except: | |
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") | |
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") | |
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) | |
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) | |
reading_dir = "images" if images == None else images | |
cam_infos_unsorted = readColmapCameras( | |
cam_extrinsics=cam_extrinsics, | |
cam_intrinsics=cam_intrinsics, | |
images_folder=os.path.join(path, reading_dir), | |
) | |
cam_infos = sorted(cam_infos_unsorted.copy(), key=lambda x: x.image_name) | |
if eval: | |
train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] | |
test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] | |
else: | |
train_cam_infos = cam_infos | |
test_cam_infos = [] | |
nerf_normalization = getNerfppNorm(train_cam_infos) | |
ply_path = os.path.join(path, "sparse/0/points3D.ply") | |
bin_path = os.path.join(path, "sparse/0/points3D.bin") | |
txt_path = os.path.join(path, "sparse/0/points3D.txt") | |
if not os.path.exists(ply_path): | |
print( | |
"Converting point3d.bin to .ply, will happen only the first time you open the scene." | |
) | |
try: | |
xyz, rgb, _ = read_points3D_binary(bin_path) | |
except: | |
xyz, rgb, _ = read_points3D_text(txt_path) | |
storePly(ply_path, xyz, rgb) | |
try: | |
pcd = fetchPly(ply_path) | |
except: | |
pcd = None | |
scene_info = SceneInfo( | |
point_cloud=pcd, | |
train_cameras=train_cam_infos, | |
test_cameras=test_cam_infos, | |
nerf_normalization=nerf_normalization, | |
ply_path=ply_path, | |
) | |
return scene_info | |
def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): | |
cam_infos = [] | |
with open(os.path.join(path, transformsfile)) as json_file: | |
contents = json.load(json_file) | |
fovx = contents["camera_angle_x"] | |
frames = contents["frames"] | |
for idx, frame in enumerate(frames): | |
cam_name = os.path.join(path, frame["file_path"] + extension) | |
# NeRF 'transform_matrix' is a camera-to-world transform | |
c2w = np.array(frame["transform_matrix"]) | |
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) | |
c2w[:3, 1:3] *= -1 | |
# get the world-to-camera transform and set R, T | |
w2c = np.linalg.inv(c2w) | |
R = np.transpose( | |
w2c[:3, :3] | |
) # R is stored transposed due to 'glm' in CUDA code | |
T = w2c[:3, 3] | |
image_path = os.path.join(path, cam_name) | |
image_name = Path(cam_name).stem | |
image = Image.open(image_path) | |
im_data = np.array(image.convert("RGBA")) | |
bg = np.array([1, 1, 1]) if white_background else np.array([0, 0, 0]) | |
norm_data = im_data / 255.0 | |
if norm_data.shape[-1] != 3: | |
arr = norm_data[:, :, :3] * norm_data[:, :, 3:4] + bg * ( | |
1 - norm_data[:, :, 3:4] | |
) | |
image = Image.fromarray(np.array(arr * 255.0, dtype=np.byte), "RGB") | |
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1]) | |
FovY = fovy | |
FovX = fovx | |
cam_infos.append( | |
CameraInfo( | |
uid=idx, | |
R=R, | |
T=T, | |
FovY=FovY, | |
FovX=FovX, | |
image=image, | |
image_path=image_path, | |
image_name=image_name, | |
width=image.size[0], | |
height=image.size[1], | |
) | |
) | |
return cam_infos | |
def uniform_surface_sampling_from_vertices_and_faces( | |
vertices, faces, num_points: int | |
) -> torch.Tensor: | |
""" | |
Uniformly sample points from the surface of a mesh. | |
Args: | |
vertices (torch.Tensor): Vertices of the mesh. | |
faces (torch.Tensor): Faces of the mesh. | |
num_points (int): Number of points to sample. | |
Returns: | |
torch.Tensor: Points sampled from the surface of the mesh. | |
""" | |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces) | |
n = num_points | |
points = [] | |
while n > 0: | |
p, _ = trimesh.sample.sample_surface_even(mesh, n) | |
n -= p.shape[0] | |
if n >= 0: | |
points.append(p) | |
else: | |
points.append(p[:n]) | |
if len(points) > 1: | |
points = np.concatenate(points, axis=0) | |
else: | |
points = points[0] | |
points = torch.from_numpy(points.astype(np.float32)) | |
return points, torch.rand_like(points) | |
def occ_from_sparse_initialize(poses, images, cameras, grid_reso, num_points): | |
# fov is in degrees | |
this_session = rembg.new_session() | |
imgs = [rembg.remove(im, session=this_session) for im in images] | |
reso = grid_reso | |
occ_grid = torch.ones((reso, reso, reso), dtype=torch.bool, device="cuda") | |
c2ws = poses | |
center = c2ws[..., :3, 3].mean(axis=0) | |
radius = np.linalg.norm(c2ws[..., :3, 3] - center, axis=-1).mean() | |
xx, yy, zz = torch.meshgrid( | |
torch.linspace(-radius, radius, reso, device="cuda"), | |
torch.linspace(-radius, radius, reso, device="cuda"), | |
torch.linspace(-radius, radius, reso, device="cuda"), | |
indexing="ij", | |
) | |
print("radius", radius) | |
# xyz_grid = torch.stack((xx.flatten(), yy.flatten(), zz.flatten()), dim=-1) | |
ww = torch.ones((reso, reso, reso), dtype=torch.float32, device="cuda") | |
xyzw_grid = torch.stack((xx, yy, zz, ww), dim=-1) | |
xyzw_grid[..., :3] += torch.from_numpy(center).cuda() | |
c2ws = torch.tensor(c2ws, dtype=torch.float32) | |
for c2w, camera, img in zip(c2ws, cameras, imgs): | |
img = np.asarray(img) | |
alpha = img[..., 3].astype(np.float32) / 255.0 | |
is_foreground = alpha > 0.05 | |
is_foreground = torch.from_numpy(is_foreground).cuda() | |
full_proj_mtx = Camera( | |
colmap_id=camera.uid, | |
R=camera.R, | |
T=camera.T, | |
FoVx=camera.FovX, | |
FoVy=camera.FovY, | |
image=torch.randn(3, 10, 10), | |
gt_alpha_mask=None, | |
image_name="no", | |
uid=0, | |
data_device="cuda", | |
).full_proj_transform | |
# check the scale | |
ij = xyzw_grid @ full_proj_mtx | |
ij = (ij + 1) / 2.0 | |
h, w = img.shape[:2] | |
ij = ij[..., :2] * torch.tensor([w, h], dtype=torch.float32, device="cuda") | |
ij = ( | |
ij.clamp( | |
min=torch.tensor([0.0, 0.0], device="cuda"), | |
max=torch.tensor([w - 1, h - 1], dtype=torch.float32, device="cuda"), | |
) | |
.to(torch.long) | |
.cuda() | |
) | |
occ_grid = torch.logical_and(occ_grid, is_foreground[ij[..., 1], ij[..., 0]]) | |
# To mesh | |
occ_grid = occ_grid.to(torch.float32).cpu().numpy() | |
vertices, triangles = mcubes.marching_cubes(occ_grid, 0.5) | |
# vertices = (vertices / reso - 0.5) * radius * 2 + center | |
# vertices = (vertices / (reso - 1.0) - 0.5) * radius * 2 * 2 + center | |
vertices = vertices / (grid_reso - 1) * 2 - 1 | |
vertices = vertices * radius + center | |
# mcubes.export_obj(vertices, triangles, "./tmp/occ_voxel.obj") | |
xyz, rgb = uniform_surface_sampling_from_vertices_and_faces( | |
vertices, triangles, num_points | |
) | |
return xyz | |
def readNerfSyntheticInfo(path, white_background, eval, extension=".png"): | |
print("Reading Training Transforms") | |
train_cam_infos = readCamerasFromTransforms( | |
path, "transforms_train.json", white_background, extension | |
) | |
print("Reading Test Transforms") | |
test_cam_infos = readCamerasFromTransforms( | |
path, "transforms_test.json", white_background, extension | |
) | |
if not eval: | |
train_cam_infos.extend(test_cam_infos) | |
test_cam_infos = [] | |
nerf_normalization = getNerfppNorm(train_cam_infos) | |
ply_path = os.path.join(path, "points3d.ply") | |
if not os.path.exists(ply_path): | |
# Since this data set has no colmap data, we start with random points | |
num_pts = 100_000 | |
print(f"Generating random point cloud ({num_pts})...") | |
# We create random points inside the bounds of the synthetic Blender scenes | |
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 | |
shs = np.random.random((num_pts, 3)) / 255.0 | |
pcd = BasicPointCloud( | |
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) | |
) | |
storePly(ply_path, xyz, SH2RGB(shs) * 255) | |
try: | |
pcd = fetchPly(ply_path) | |
except: | |
pcd = None | |
scene_info = SceneInfo( | |
point_cloud=pcd, | |
train_cameras=train_cam_infos, | |
test_cameras=test_cam_infos, | |
nerf_normalization=nerf_normalization, | |
ply_path=ply_path, | |
) | |
return scene_info | |
def constructVideoNVSInfo( | |
num_frames, | |
radius, | |
elevation, | |
fov, | |
reso, | |
images, | |
masks, | |
num_pts=100_000, | |
train=True, | |
): | |
poses = get_uniform_poses(num_frames, radius, elevation) | |
w2cs = np.linalg.inv(poses) | |
train_cam_infos = [] | |
for idx, pose in enumerate(w2cs): | |
train_cam_infos.append( | |
CameraInfo( | |
uid=idx, | |
R=np.transpose(pose[:3, :3]), | |
T=pose[:3, 3], | |
FovY=np.deg2rad(fov), | |
FovX=np.deg2rad(fov), | |
image=images[idx], | |
image_path=None, | |
image_name=idx, | |
width=reso, | |
height=reso, | |
) | |
) | |
nerf_normalization = getNerfppNorm(train_cam_infos) | |
# xyz = np.random.random((num_pts, 3)) * radius / 3 - radius / 3 | |
xyz = np.random.randn(num_pts, 3) * radius / 16 | |
# if len(poses) <= 24: | |
# xyz = occ_from_sparse_initialize(poses, images, train_cam_infos, 256, num_pts) | |
# num_pts = xyz.shape[0] | |
# else: | |
# xyz = np.random.randn(num_pts, 3) * radius / 16 | |
xyz = np.random.randn(num_pts, 3) * radius / 16 | |
# shs = np.random.random((num_pts, 3)) / 255.0 | |
shs = np.ones((num_pts, 3)) * 0.2 | |
pcd = BasicPointCloud( | |
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) | |
) | |
ply_path = "./tmp/points3d.ply" | |
storePly(ply_path, xyz, SH2RGB(shs) * 255) | |
pcd = fetchPly(ply_path) | |
scene_info = SceneInfo( | |
point_cloud=pcd, | |
train_cameras=train_cam_infos, | |
test_cameras=[], | |
nerf_normalization=nerf_normalization, | |
ply_path="./tmp/points3d.ply", | |
) | |
return scene_info | |
sceneLoadTypeCallbacks = { | |
"Colmap": readColmapSceneInfo, | |
"Blender": readNerfSyntheticInfo, | |
"VideoNVS": constructVideoNVSInfo, | |
} | |