Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
from pathlib import Path | |
from mediapy import read_video, write_video | |
from scene.cameras import Camera | |
import numpy as np | |
from utils.general_utils import PILtoTorch | |
from utils.graphics_utils import fov2focal | |
WARNED = False | |
def loadCam(args, id, cam_info, resolution_scale): | |
orig_w, orig_h = cam_info.image.size | |
if args.resolution in [1, 2, 4, 8]: | |
resolution = round(orig_w / (resolution_scale * args.resolution)), round( | |
orig_h / (resolution_scale * args.resolution) | |
) | |
else: # should be a type that converts to float | |
if args.resolution == -1: | |
if orig_w > 1600: | |
global WARNED | |
if not WARNED: | |
print( | |
"[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n " | |
"If this is not desired, please explicitly specify '--resolution/-r' as 1" | |
) | |
WARNED = True | |
global_down = orig_w / 1600 | |
else: | |
global_down = 1 | |
else: | |
global_down = orig_w / args.resolution | |
scale = float(global_down) * float(resolution_scale) | |
resolution = (int(orig_w / scale), int(orig_h / scale)) | |
resized_image_rgb = PILtoTorch(cam_info.image, resolution) | |
gt_image = resized_image_rgb[:3, ...] | |
loaded_mask = None | |
if resized_image_rgb.shape[1] == 4: | |
loaded_mask = resized_image_rgb[3:4, ...] | |
return Camera( | |
colmap_id=cam_info.uid, | |
R=cam_info.R, | |
T=cam_info.T, | |
FoVx=cam_info.FovX, | |
FoVy=cam_info.FovY, | |
image=gt_image, | |
gt_alpha_mask=loaded_mask, | |
image_name=cam_info.image_name, | |
uid=id, | |
data_device=args.data_device, | |
) | |
def cameraList_from_camInfos(cam_infos, resolution_scale, args): | |
camera_list = [] | |
for id, c in enumerate(cam_infos): | |
camera_list.append(loadCam(args, id, c, resolution_scale)) | |
return camera_list | |
def camera_to_JSON(id, camera: Camera): | |
Rt = np.zeros((4, 4)) | |
Rt[:3, :3] = camera.R.transpose() | |
Rt[:3, 3] = camera.T | |
Rt[3, 3] = 1.0 | |
W2C = np.linalg.inv(Rt) | |
pos = W2C[:3, 3] | |
rot = W2C[:3, :3] | |
serializable_array_2d = [x.tolist() for x in rot] | |
camera_entry = { | |
"id": id, | |
"img_name": camera.image_name, | |
"width": camera.width, | |
"height": camera.height, | |
"position": pos.tolist(), | |
"rotation": serializable_array_2d, | |
"fy": fov2focal(camera.FovY, camera.height), | |
"fx": fov2focal(camera.FovX, camera.width), | |
} | |
return camera_entry | |
def get_c2w_from_up_and_look_at( | |
up, | |
look_at, | |
pos, | |
opengl=False, | |
): | |
up = up / np.linalg.norm(up) | |
z = look_at - pos | |
z = z / np.linalg.norm(z) | |
y = -up | |
x = np.cross(y, z) | |
x /= np.linalg.norm(x) | |
y = np.cross(z, x) | |
c2w = np.zeros([4, 4], dtype=np.float32) | |
c2w[:3, 0] = x | |
c2w[:3, 1] = y | |
c2w[:3, 2] = z | |
c2w[:3, 3] = pos | |
c2w[3, 3] = 1.0 | |
# opencv to opengl | |
if opengl: | |
c2w[..., 1:3] *= -1 | |
return c2w | |
def get_uniform_poses(num_frames, radius, elevation, opengl=False): | |
T = num_frames | |
azimuths = np.deg2rad(np.linspace(0, 360, T + 1)[:T]) | |
elevations = np.full_like(azimuths, np.deg2rad(elevation)) | |
cam_dists = np.full_like(azimuths, radius) | |
campos = np.stack( | |
[ | |
cam_dists * np.cos(elevations) * np.cos(azimuths), | |
cam_dists * np.cos(elevations) * np.sin(azimuths), | |
cam_dists * np.sin(elevations), | |
], | |
axis=-1, | |
) | |
center = np.array([0, 0, 0], dtype=np.float32) | |
up = np.array([0, 0, 1], dtype=np.float32) | |
poses = [] | |
for t in range(T): | |
poses.append(get_c2w_from_up_and_look_at(up, center, campos[t], opengl=opengl)) | |
return np.stack(poses, axis=0) | |