V3D / app.py
heheyas
add seed
20fbe27
# TODO
import numpy as np
import argparse
import torch
from torchvision.utils import make_grid
import tempfile
import gradio as gr
from omegaconf import OmegaConf
from einops import rearrange
from scripts.pub.V3D_512 import (
sample_one,
get_batch,
get_unique_embedder_keys_from_conditioner,
load_model,
)
from sgm.util import default, instantiate_from_config
from safetensors.torch import load_file as load_safetensors
from PIL import Image
from kiui.op import recenter
from torchvision.transforms import ToTensor
from einops import rearrange, repeat
import rembg
import os
from glob import glob
from mediapy import write_video
from pathlib import Path
import spaces
from huggingface_hub import hf_hub_download
import imageio
import cv2
@spaces.GPU
def do_sample(
image,
num_frames,
num_steps,
decoding_t,
border_ratio,
ignore_alpha,
output_folder,
seed,
):
# if image.mode == "RGBA":
# image = image.convert("RGB")
torch.manual_seed(seed)
image = Image.fromarray(image)
w, h = image.size
if border_ratio > 0:
if image.mode != "RGBA" or ignore_alpha:
image = image.convert("RGB")
image = np.asarray(image)
carved_image = rembg.remove(image, session=rembg_session) # [H, W, 4]
else:
image = np.asarray(image)
carved_image = image
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=border_ratio)
image = image.astype(np.float32) / 255.0
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
image = Image.fromarray((image * 255).astype(np.uint8))
else:
print("Ignore border ratio")
image = image.resize((512, 512))
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
value_dict = {}
value_dict["motion_bucket_id"] = 0
value_dict["fps_id"] = 0
value_dict["cond_aug"] = 0.05
value_dict["cond_frames_without_noise"] = clip_model(image)
value_dict["cond_frames"] = ae_model.encode(image)
value_dict["cond_frames"] += 0.05 * torch.randn_like(value_dict["cond_frames"])
value_dict["cond_aug"] = 0.05
print(device)
with torch.no_grad():
with torch.autocast(device_type="cuda"):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device)
randn = randn.to(device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
frames = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
# write_video(video_path, frames, fps=6)
# writer = cv2.VideoWriter(
# video_path,
# cv2.VideoWriter_fourcc("m", "p", "4", "v"),
# 6,
# (frames.shape[-1], frames.shape[-2]),
# )
# for fr in frames:
# writer.write(cv2.cvtColor(fr, cv2.COLOR_RGB2BGR))
# writer.release()
imageio.mimwrite(video_path, frames, fps=6)
return video_path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# download
V3D_ckpt_path = hf_hub_download(repo_id="heheyas/V3D", filename="V3D.ckpt")
svd_xt_ckpt_path = hf_hub_download(
repo_id="stabilityai/stable-video-diffusion-img2vid-xt",
filename="svd_xt.safetensors",
)
model_config = "./scripts/pub/configs/V3D_512.yaml"
num_frames = OmegaConf.load(
model_config
).model.params.sampler_config.params.guider_config.params.num_frames
print("Detected num_frames:", num_frames)
# num_steps = default(num_steps, 25)
num_steps = 25
output_folder = "outputs/V3D_512"
sd = load_safetensors(svd_xt_ckpt_path)
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
clip_model = instantiate_from_config(clip_model_config).eval()
clip_sd = dict()
for k, v in sd.items():
if "conditioner.embedders.0" in k:
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
clip_model.load_state_dict(clip_sd)
clip_model = clip_model.to(device)
ae_model_config = OmegaConf.load("./configs/ae/video.yaml")
ae_model = instantiate_from_config(ae_model_config).eval()
encoder_sd = dict()
for k, v in sd.items():
if "first_stage_model" in k:
encoder_sd[k.replace("first_stage_model.", "")] = v
ae_model.load_state_dict(encoder_sd)
ae_model = ae_model.to(device)
rembg_session = rembg.new_session()
model, _ = load_model(
model_config,
device,
num_frames,
num_steps,
min_cfg=3.5,
max_cfg=3.5,
ckpt_path=V3D_ckpt_path,
)
model = model.to(device)
with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo:
with gr.Row(equal_height=True):
with gr.Column():
input_image = gr.Image(value=None, label="Input Image")
border_ratio_slider = gr.Slider(
value=0.3,
label="Border Ratio",
minimum=0.05,
maximum=0.5,
step=0.05,
)
seed_input = gr.Number(value=42)
decoding_t_slider = gr.Slider(
value=1,
label="Number of Decoding frames",
minimum=1,
maximum=num_frames,
step=1,
)
min_guidance_slider = gr.Slider(
value=3.5,
label="Min CFG Value",
minimum=0.05,
maximum=5,
step=0.05,
)
max_guidance_slider = gr.Slider(
value=3.5,
label="Max CFG Value",
minimum=0.05,
maximum=5,
step=0.05,
)
run_button = gr.Button(value="Run V3D")
with gr.Column():
output_video = gr.Video(value=None, label="Output Orbit Video")
@run_button.click(
inputs=[
input_image,
border_ratio_slider,
min_guidance_slider,
max_guidance_slider,
decoding_t_slider,
seed_input,
],
outputs=[output_video],
)
def _(image, border_ratio, min_guidance, max_guidance, decoding_t, seed):
model.sampler.guider.max_scale = max_guidance
model.sampler.guider.min_scale = min_guidance
return do_sample(
image,
num_frames,
num_steps,
int(decoding_t),
border_ratio,
False,
output_folder,
seed,
)
demo.launch()