File size: 1,958 Bytes
d347764
 
 
 
9307dab
d347764
 
 
 
 
 
 
 
 
73eab05
 
d347764
 
 
 
73eab05
d347764
 
 
 
c9dc5f3
1864517
 
 
d347764
 
 
 
 
1864517
d347764
 
 
f805e49
 
73eab05
f805e49
c737803
 
 
d347764
bcd35fa
d347764
f805e49
 
d347764
c737803
 
 
bcd35fa
c737803
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import VitsModel, VitsTokenizer

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

model = VitsModel.from_pretrained('facebook/mms-tts-rus').to(device)
tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-rus')



def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"russian"})
    return outputs["text"]


def synthesise(text):
    inputs = tokenizer(text=text, return_tensors="pt")
    with torch.no_grad():
        speech = model(**inputs).waveform
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()