Spaces:
Sleeping
Sleeping
helboukkouri
commited on
Commit
•
0a25afe
1
Parent(s):
39bce97
initial commit
Browse files- README.md +5 -3
- app.py +252 -0
- requirements.txt +220 -0
README.md
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
---
|
2 |
title: Regression Models
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.20.1
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
1 |
---
|
2 |
title: Regression Models
|
3 |
+
emoji: 🧪
|
4 |
colorFrom: indigo
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.20.1
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
Play around with various regression models to see how the degree of the polynomial impacts training.
|
14 |
+
|
15 |
+
You can also change the number of data points along with how noisy the data is.
|
app.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import sympy as sp
|
4 |
+
import seaborn as sns
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
from sklearn.preprocessing import PolynomialFeatures
|
9 |
+
from sklearn.pipeline import make_pipeline
|
10 |
+
|
11 |
+
|
12 |
+
sns.set_style(style="darkgrid")
|
13 |
+
sns.set_context(context="notebook", font_scale=0.7)
|
14 |
+
|
15 |
+
MAX_NOISE = 20
|
16 |
+
DEFAULT_NOISE = 6
|
17 |
+
SLIDE_NOISE_STEP = 2
|
18 |
+
|
19 |
+
MAX_POINTS = 100
|
20 |
+
DEFAULT_POINTS = 20
|
21 |
+
SLIDE_POINTS_STEP = 5
|
22 |
+
|
23 |
+
def generate_equation(process_params):
|
24 |
+
process_params = process_params.astype(float).values.tolist()
|
25 |
+
|
26 |
+
# Define symbols
|
27 |
+
x = sp.symbols('x')
|
28 |
+
coefficients = sp.symbols('a b c d e')
|
29 |
+
|
30 |
+
# Create the polynomial expression
|
31 |
+
polynomial_expression = None
|
32 |
+
for i, coef in enumerate(reversed(coefficients)):
|
33 |
+
polynomial_expression = polynomial_expression + coef * x**i if polynomial_expression else coef * x**i
|
34 |
+
|
35 |
+
# Parameter mapping
|
36 |
+
parameters = {coef: value for coef, value in zip(coefficients, process_params[0])}
|
37 |
+
|
38 |
+
# Substitute parameter values into the expression
|
39 |
+
polynomial_with_values = polynomial_expression.subs(parameters)
|
40 |
+
latex_representation = sp.latex(polynomial_with_values)
|
41 |
+
return fr"$${latex_representation}$$"
|
42 |
+
|
43 |
+
|
44 |
+
def true_process(x, process_params):
|
45 |
+
"""The true process we want to model."""
|
46 |
+
process_params = process_params.astype(float).values.tolist()
|
47 |
+
return (
|
48 |
+
process_params[0][0] * (x ** 4)
|
49 |
+
+ process_params[0][1] * (x ** 3)
|
50 |
+
+ process_params[0][2] * (x ** 2)
|
51 |
+
+ process_params[0][3] * x
|
52 |
+
+ process_params[0][4]
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
def generate_data(num_points, noise_level, process_params):
|
57 |
+
|
58 |
+
# x is the list of input values
|
59 |
+
input_values = np.linspace(-5, 2, num_points)
|
60 |
+
input_values_dense = np.linspace(-5, 2, MAX_POINTS)
|
61 |
+
|
62 |
+
# y = f(x) is the underlying process we want to model
|
63 |
+
y = [true_process(x, process_params) for x in input_values]
|
64 |
+
y_dense = [true_process(x, process_params) for x in input_values_dense]
|
65 |
+
|
66 |
+
# however, we can only observe a noisy version of f(x)
|
67 |
+
noise = np.random.normal(0, noise_level, len(input_values))
|
68 |
+
y_noisy = y + noise
|
69 |
+
|
70 |
+
return input_values, input_values_dense, y, y_dense, y_noisy
|
71 |
+
|
72 |
+
|
73 |
+
def make_plot(
|
74 |
+
num_points, noise_level, process_params,
|
75 |
+
show_true_process, show_original_points,
|
76 |
+
show_noisy_points, show_added_noise,
|
77 |
+
show_learned_process, show_predicted_points,
|
78 |
+
show_prediction_error,
|
79 |
+
polynomial_degree=None
|
80 |
+
):
|
81 |
+
|
82 |
+
x, x_dense, y, y_dense, y_noisy = generate_data(num_points, noise_level, process_params)
|
83 |
+
|
84 |
+
fig = plt.figure(dpi=400)
|
85 |
+
if show_true_process:
|
86 |
+
plt.plot(
|
87 |
+
x_dense, y_dense, "-", color="#363A4F",
|
88 |
+
label="True Process",
|
89 |
+
lw=1.5,
|
90 |
+
)
|
91 |
+
if show_added_noise:
|
92 |
+
plt.vlines(
|
93 |
+
x, y, y_noisy, color="#556D9A",
|
94 |
+
linestyles="dashed",
|
95 |
+
alpha=0.75,
|
96 |
+
lw=1,
|
97 |
+
label="Added Noise",
|
98 |
+
)
|
99 |
+
if show_original_points:
|
100 |
+
plt.plot(
|
101 |
+
x, y, "-o", color="none",
|
102 |
+
ms=6,
|
103 |
+
markerfacecolor="white",
|
104 |
+
markeredgecolor="#556D9A",
|
105 |
+
markeredgewidth=1.2,
|
106 |
+
label="Original Points",
|
107 |
+
)
|
108 |
+
if show_noisy_points and not polynomial_degree:
|
109 |
+
plt.plot(
|
110 |
+
x, y_noisy, "-o", color="none",
|
111 |
+
ms=6.5,
|
112 |
+
markerfacecolor="#556D9A",
|
113 |
+
markeredgecolor="none",
|
114 |
+
markeredgewidth=1.5,
|
115 |
+
alpha=1,
|
116 |
+
label="Noisy Points",
|
117 |
+
)
|
118 |
+
|
119 |
+
# Fit the selected regression model
|
120 |
+
if polynomial_degree:
|
121 |
+
|
122 |
+
degree = polynomial_degree
|
123 |
+
model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
|
124 |
+
model.fit(x.reshape(-1, 1), y_noisy)
|
125 |
+
|
126 |
+
# Plot the fitted regression model
|
127 |
+
y_pred_dense = model.predict(x_dense.reshape(-1, 1))
|
128 |
+
y_pred = model.predict(x.reshape(-1, 1))
|
129 |
+
if show_learned_process:
|
130 |
+
plt.plot(
|
131 |
+
x_dense, y_pred_dense, "-", color="#327747",
|
132 |
+
label="Learned Process",
|
133 |
+
lw=1.5,
|
134 |
+
alpha=0.75,
|
135 |
+
)
|
136 |
+
if show_prediction_error:
|
137 |
+
plt.vlines(
|
138 |
+
x, y_pred, y_noisy, color="#43A461",
|
139 |
+
linestyles="dashed",
|
140 |
+
alpha=0.75,
|
141 |
+
lw=1,
|
142 |
+
label="Prediction Error",
|
143 |
+
)
|
144 |
+
if show_noisy_points:
|
145 |
+
plt.plot(
|
146 |
+
x, y_noisy, "-o", color="none",
|
147 |
+
ms=6.5,
|
148 |
+
markerfacecolor="#556D9A",
|
149 |
+
markeredgecolor="none",
|
150 |
+
markeredgewidth=1.5,
|
151 |
+
alpha=1,
|
152 |
+
label="Training Points",
|
153 |
+
)
|
154 |
+
if show_predicted_points:
|
155 |
+
plt.plot(
|
156 |
+
x, y_pred, "-o", color="none",
|
157 |
+
ms=6.5,
|
158 |
+
markerfacecolor="#43A461",
|
159 |
+
markeredgecolor="none",
|
160 |
+
markeredgewidth=1.5,
|
161 |
+
label="Predicted Points",
|
162 |
+
alpha=1,
|
163 |
+
)
|
164 |
+
|
165 |
+
plt.xlabel("x")
|
166 |
+
plt.ylabel("y")
|
167 |
+
plt.legend(fontsize=7.5)
|
168 |
+
plt.tight_layout()
|
169 |
+
return fig
|
170 |
+
|
171 |
+
# Custom CSS
|
172 |
+
css = """
|
173 |
+
.train-button {
|
174 |
+
font-size: 1.2em;
|
175 |
+
width: 20%!important;
|
176 |
+
margin: 0;
|
177 |
+
}
|
178 |
+
.model-section {
|
179 |
+
font-size: 1em;
|
180 |
+
width: 100%!important;
|
181 |
+
margin: 0 0 1em 0;
|
182 |
+
}
|
183 |
+
.gradio-container {
|
184 |
+
width: 40%!important;
|
185 |
+
min-width: 800px;
|
186 |
+
}
|
187 |
+
"""
|
188 |
+
with gr.Blocks(css=css) as demo:
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
gr.Markdown("## Underlying Process")
|
192 |
+
with gr.Row():
|
193 |
+
process_params = gr.DataFrame(
|
194 |
+
value=[[0.5, 2, -0.5, -2, 1]],
|
195 |
+
label="Polynomial Coefficients",
|
196 |
+
type="pandas",
|
197 |
+
column_widths=("2", "1", "1", "1", "1w"),
|
198 |
+
headers=["x ** 4", "x ** 3", "x ** 2", "x", "1"],
|
199 |
+
interactive=True
|
200 |
+
)
|
201 |
+
equation = gr.Markdown()
|
202 |
+
|
203 |
+
gr.Markdown("## Data Generation")
|
204 |
+
with gr.Row():
|
205 |
+
num_points = gr.Slider(
|
206 |
+
minimum=5,
|
207 |
+
maximum=MAX_POINTS,
|
208 |
+
value=DEFAULT_POINTS,
|
209 |
+
step=SLIDE_POINTS_STEP,
|
210 |
+
label="Number of Points"
|
211 |
+
)
|
212 |
+
|
213 |
+
noise_level = gr.Slider(
|
214 |
+
minimum=0,
|
215 |
+
maximum=MAX_NOISE,
|
216 |
+
value=DEFAULT_NOISE,
|
217 |
+
step=SLIDE_NOISE_STEP,
|
218 |
+
label="Noise Level"
|
219 |
+
)
|
220 |
+
|
221 |
+
show_params = []
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column():
|
224 |
+
show_params.append(gr.Checkbox(label="Underlying Process", value=True))
|
225 |
+
show_params.append(gr.Checkbox(label="Original Points", value=True))
|
226 |
+
show_params.append(gr.Checkbox(label="Noisy Points", value=True))
|
227 |
+
show_params.append(gr.Checkbox(label="Added Noise", value=True))
|
228 |
+
with gr.Column():
|
229 |
+
show_params.append(gr.Checkbox(label="Learned Process", value=True))
|
230 |
+
show_params.append(gr.Checkbox(label="Predicted Points", value=True))
|
231 |
+
show_params.append(gr.Checkbox(label="Prediction Error", value=True))
|
232 |
+
|
233 |
+
# Add model choice dropdown and training trigger button
|
234 |
+
gr.Markdown("## Modelisation")
|
235 |
+
with gr.Row(elem_classes=["model-section"]):
|
236 |
+
polynomial_degree = gr.Number(label="Choose the degree of your regression model", value=1, minimum=1, maximum=15, step=1, scale=2)
|
237 |
+
train_button = gr.Button(value="Train Model", elem_classes=["train-button"], scale=1)
|
238 |
+
|
239 |
+
scatter_plot = gr.Plot(elem_classes=["main-plot"])
|
240 |
+
|
241 |
+
num_points.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
|
242 |
+
noise_level.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
|
243 |
+
process_params.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
|
244 |
+
process_params.change(fn=generate_equation, inputs=[process_params], outputs=equation)
|
245 |
+
train_button.click(make_plot, inputs=[num_points, noise_level, process_params, *show_params, polynomial_degree], outputs=scatter_plot)
|
246 |
+
for component in show_params:
|
247 |
+
component.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
|
248 |
+
demo.load(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
|
249 |
+
demo.load(fn=generate_equation, inputs=[process_params], outputs=equation)
|
250 |
+
|
251 |
+
if __name__ == "__main__":
|
252 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# This file is autogenerated by pip-compile with Python 3.10
|
3 |
+
# by the following command:
|
4 |
+
#
|
5 |
+
# pip-compile requirements.in
|
6 |
+
#
|
7 |
+
aiofiles==23.2.1
|
8 |
+
# via gradio
|
9 |
+
altair==5.2.0
|
10 |
+
# via gradio
|
11 |
+
annotated-types==0.6.0
|
12 |
+
# via pydantic
|
13 |
+
anyio==4.3.0
|
14 |
+
# via
|
15 |
+
# httpx
|
16 |
+
# starlette
|
17 |
+
attrs==23.2.0
|
18 |
+
# via
|
19 |
+
# jsonschema
|
20 |
+
# referencing
|
21 |
+
certifi==2024.2.2
|
22 |
+
# via
|
23 |
+
# httpcore
|
24 |
+
# httpx
|
25 |
+
# requests
|
26 |
+
charset-normalizer==3.3.2
|
27 |
+
# via requests
|
28 |
+
click==8.1.7
|
29 |
+
# via
|
30 |
+
# typer
|
31 |
+
# uvicorn
|
32 |
+
colorama==0.4.6
|
33 |
+
# via typer
|
34 |
+
contourpy==1.2.0
|
35 |
+
# via matplotlib
|
36 |
+
cycler==0.12.1
|
37 |
+
# via matplotlib
|
38 |
+
exceptiongroup==1.2.0
|
39 |
+
# via anyio
|
40 |
+
fastapi==0.110.0
|
41 |
+
# via gradio
|
42 |
+
ffmpy==0.3.2
|
43 |
+
# via gradio
|
44 |
+
filelock==3.13.1
|
45 |
+
# via huggingface-hub
|
46 |
+
fonttools==4.49.0
|
47 |
+
# via matplotlib
|
48 |
+
fsspec==2024.2.0
|
49 |
+
# via
|
50 |
+
# gradio-client
|
51 |
+
# huggingface-hub
|
52 |
+
gradio==4.19.2
|
53 |
+
# via -r requirements.in
|
54 |
+
gradio-client==0.10.1
|
55 |
+
# via gradio
|
56 |
+
h11==0.14.0
|
57 |
+
# via
|
58 |
+
# httpcore
|
59 |
+
# uvicorn
|
60 |
+
httpcore==1.0.4
|
61 |
+
# via httpx
|
62 |
+
httpx==0.27.0
|
63 |
+
# via
|
64 |
+
# gradio
|
65 |
+
# gradio-client
|
66 |
+
huggingface-hub==0.21.4
|
67 |
+
# via
|
68 |
+
# gradio
|
69 |
+
# gradio-client
|
70 |
+
idna==3.6
|
71 |
+
# via
|
72 |
+
# anyio
|
73 |
+
# httpx
|
74 |
+
# requests
|
75 |
+
importlib-resources==6.1.3
|
76 |
+
# via gradio
|
77 |
+
jinja2==3.1.3
|
78 |
+
# via
|
79 |
+
# altair
|
80 |
+
# gradio
|
81 |
+
joblib==1.3.2
|
82 |
+
# via scikit-learn
|
83 |
+
jsonschema==4.21.1
|
84 |
+
# via altair
|
85 |
+
jsonschema-specifications==2023.12.1
|
86 |
+
# via jsonschema
|
87 |
+
kiwisolver==1.4.5
|
88 |
+
# via matplotlib
|
89 |
+
markdown-it-py==3.0.0
|
90 |
+
# via rich
|
91 |
+
markupsafe==2.1.5
|
92 |
+
# via
|
93 |
+
# gradio
|
94 |
+
# jinja2
|
95 |
+
matplotlib==3.8.3
|
96 |
+
# via
|
97 |
+
# gradio
|
98 |
+
# seaborn
|
99 |
+
mdurl==0.1.2
|
100 |
+
# via markdown-it-py
|
101 |
+
mpmath==1.3.0
|
102 |
+
# via sympy
|
103 |
+
numpy==1.26.4
|
104 |
+
# via
|
105 |
+
# -r requirements.in
|
106 |
+
# altair
|
107 |
+
# contourpy
|
108 |
+
# gradio
|
109 |
+
# matplotlib
|
110 |
+
# pandas
|
111 |
+
# scikit-learn
|
112 |
+
# scipy
|
113 |
+
# seaborn
|
114 |
+
orjson==3.9.15
|
115 |
+
# via gradio
|
116 |
+
packaging==23.2
|
117 |
+
# via
|
118 |
+
# altair
|
119 |
+
# gradio
|
120 |
+
# gradio-client
|
121 |
+
# huggingface-hub
|
122 |
+
# matplotlib
|
123 |
+
pandas==2.2.1
|
124 |
+
# via
|
125 |
+
# -r requirements.in
|
126 |
+
# altair
|
127 |
+
# gradio
|
128 |
+
# seaborn
|
129 |
+
pillow==10.2.0
|
130 |
+
# via
|
131 |
+
# gradio
|
132 |
+
# matplotlib
|
133 |
+
pydantic==2.6.3
|
134 |
+
# via
|
135 |
+
# fastapi
|
136 |
+
# gradio
|
137 |
+
pydantic-core==2.16.3
|
138 |
+
# via pydantic
|
139 |
+
pydub==0.25.1
|
140 |
+
# via gradio
|
141 |
+
pygments==2.17.2
|
142 |
+
# via rich
|
143 |
+
pyparsing==3.1.2
|
144 |
+
# via matplotlib
|
145 |
+
python-dateutil==2.9.0.post0
|
146 |
+
# via
|
147 |
+
# matplotlib
|
148 |
+
# pandas
|
149 |
+
python-multipart==0.0.9
|
150 |
+
# via gradio
|
151 |
+
pytz==2024.1
|
152 |
+
# via pandas
|
153 |
+
pyyaml==6.0.1
|
154 |
+
# via
|
155 |
+
# gradio
|
156 |
+
# huggingface-hub
|
157 |
+
referencing==0.33.0
|
158 |
+
# via
|
159 |
+
# jsonschema
|
160 |
+
# jsonschema-specifications
|
161 |
+
requests==2.31.0
|
162 |
+
# via huggingface-hub
|
163 |
+
rich==13.7.1
|
164 |
+
# via typer
|
165 |
+
rpds-py==0.18.0
|
166 |
+
# via
|
167 |
+
# jsonschema
|
168 |
+
# referencing
|
169 |
+
ruff==0.3.1
|
170 |
+
# via gradio
|
171 |
+
scikit-learn==1.4.1.post1
|
172 |
+
# via -r requirements.in
|
173 |
+
scipy==1.12.0
|
174 |
+
# via scikit-learn
|
175 |
+
seaborn==0.13.2
|
176 |
+
# via -r requirements.in
|
177 |
+
semantic-version==2.10.0
|
178 |
+
# via gradio
|
179 |
+
shellingham==1.5.4
|
180 |
+
# via typer
|
181 |
+
six==1.16.0
|
182 |
+
# via python-dateutil
|
183 |
+
sniffio==1.3.1
|
184 |
+
# via
|
185 |
+
# anyio
|
186 |
+
# httpx
|
187 |
+
starlette==0.36.3
|
188 |
+
# via fastapi
|
189 |
+
sympy==1.12
|
190 |
+
# via -r requirements.in
|
191 |
+
threadpoolctl==3.3.0
|
192 |
+
# via scikit-learn
|
193 |
+
tomlkit==0.12.0
|
194 |
+
# via gradio
|
195 |
+
toolz==0.12.1
|
196 |
+
# via altair
|
197 |
+
tqdm==4.66.2
|
198 |
+
# via huggingface-hub
|
199 |
+
typer[all]==0.9.0
|
200 |
+
# via gradio
|
201 |
+
typing-extensions==4.10.0
|
202 |
+
# via
|
203 |
+
# altair
|
204 |
+
# anyio
|
205 |
+
# fastapi
|
206 |
+
# gradio
|
207 |
+
# gradio-client
|
208 |
+
# huggingface-hub
|
209 |
+
# pydantic
|
210 |
+
# pydantic-core
|
211 |
+
# typer
|
212 |
+
# uvicorn
|
213 |
+
tzdata==2024.1
|
214 |
+
# via pandas
|
215 |
+
urllib3==2.2.1
|
216 |
+
# via requests
|
217 |
+
uvicorn==0.27.1
|
218 |
+
# via gradio
|
219 |
+
websockets==11.0.3
|
220 |
+
# via gradio-client
|