heliosbrahma's picture
Update app.py
cbb7dce verified
import warnings
warnings.filterwarnings("ignore")
import os, openai, cohere
import gradio as gr
from pathlib import Path
from langchain.document_loaders import PyMuPDFLoader
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import CohereEmbeddings
from langchain.vectorstores import Qdrant
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
QDRANT_API_KEY = os.environ["QDRANT_API_KEY"]
QDRANT_CLUSTER_URL = os.environ["QDRANT_CLUSTER_URL"]
QDRANT_COLLECTION_NAME = os.environ["QDRANT_COLLECTION_NAME"]
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
prompt_file = "prompt_template.txt"
def pdf_loader(pdf_file):
yield "Extracting contents from PDF document..."
loader_mu = PyMuPDFLoader(pdf_file.name)
pages = loader_mu.load()
docs = []
for i in range(len(pages)):
raw_page_content = pages[i].page_content
metadata_source = {"source": str(i + 1)}
doc = Document(
page_content=pages[i].page_content, metadata={"source": str(i + 1)}
)
docs.append(doc)
yield "Splitting contents into chunks of text..."
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
model_name="gpt-3.5-turbo",
chunk_size=1024,
chunk_overlap=64,
separators=["\n\n", "\n", " "],
)
docs_splitter = text_splitter.split_documents(docs)
cohere_embeddings = CohereEmbeddings(model="large", cohere_api_key=COHERE_API_KEY)
yield "Uploading chunks of text into Qdrant..."
qdrant = Qdrant.from_documents(
docs_splitter,
cohere_embeddings,
url=QDRANT_CLUSTER_URL,
prefer_grpc=True,
api_key=QDRANT_API_KEY,
collection_name=QDRANT_COLLECTION_NAME,
)
with open(prompt_file, "r") as file:
prompt_template = file.read()
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["question", "context"]
)
llm = ChatOpenAI(
model_name="gpt-3.5-turbo", temperature=0, openai_api_key=OPENAI_API_KEY
)
global qa
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=qdrant.as_retriever(),
chain_type_kwargs={"prompt": PROMPT},
)
yield "Success! You can now click on the 'AI Assistant' tab to interact with your document"
def chat(chat_history, query):
res = qa.run(query)
progressive_response = ""
for ele in "".join(res):
progressive_response += ele + ""
yield chat_history + [(query, progressive_response)]
with gr.Blocks() as demo:
gr.HTML(
"""<h1>Welcome to AI PDF Assistant</h1>"""
)
gr.Markdown(
"AI Assistant for PDF documents. Upload your pdf document, click 'Process PDF docs' and wait for success confirmation message.<br>"
"After success confirmation, click on the 'AI Assistant' tab to interact with your document.<br>"
"Type your query, and hit enter. Click on 'Clear Chat History' to delete all previous conversations."
)
with gr.Tab("Upload/Process PDF documents"):
text_input = gr.File(label="Upload PDF file", file_types=[".pdf"])
text_output = gr.Textbox(label="Status...")
text_button = gr.Button("Process PDF docs!")
text_button.click(pdf_loader, text_input, text_output)
with gr.Tab("AI Assistant"):
chatbot = gr.Chatbot()
query = gr.Textbox(
label="Type your query here, then press 'enter' and scroll up for response"
)
clear = gr.Button("Clear Chat History!")
query.submit(chat, [chatbot, query], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue().launch()