import warnings warnings.filterwarnings("ignore") import os, openai, cohere import gradio as gr from pathlib import Path from langchain.document_loaders import PyMuPDFLoader from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import CohereEmbeddings from langchain.vectorstores import Qdrant from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA COHERE_API_KEY = os.environ["COHERE_API_KEY"] QDRANT_API_KEY = os.environ["QDRANT_API_KEY"] QDRANT_CLUSTER_URL = os.environ["QDRANT_CLUSTER_URL"] QDRANT_COLLECTION_NAME = os.environ["QDRANT_COLLECTION_NAME"] OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] prompt_file = "prompt_template.txt" def pdf_loader(pdf_file): yield "Extracting contents from PDF document..." loader_mu = PyMuPDFLoader(pdf_file.name) pages = loader_mu.load() docs = [] for i in range(len(pages)): raw_page_content = pages[i].page_content metadata_source = {"source": str(i + 1)} doc = Document( page_content=pages[i].page_content, metadata={"source": str(i + 1)} ) docs.append(doc) yield "Splitting contents into chunks of text..." text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( model_name="gpt-3.5-turbo", chunk_size=1024, chunk_overlap=64, separators=["\n\n", "\n", " "], ) docs_splitter = text_splitter.split_documents(docs) cohere_embeddings = CohereEmbeddings(model="large", cohere_api_key=COHERE_API_KEY) yield "Uploading chunks of text into Qdrant..." qdrant = Qdrant.from_documents( docs_splitter, cohere_embeddings, url=QDRANT_CLUSTER_URL, prefer_grpc=True, api_key=QDRANT_API_KEY, collection_name=QDRANT_COLLECTION_NAME, ) with open(prompt_file, "r") as file: prompt_template = file.read() PROMPT = PromptTemplate( template=prompt_template, input_variables=["question", "context"] ) llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0, openai_api_key=OPENAI_API_KEY ) global qa qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=qdrant.as_retriever(), chain_type_kwargs={"prompt": PROMPT}, ) yield "Success! You can now click on the 'AI Assistant' tab to interact with your document" def chat(chat_history, query): res = qa.run(query) progressive_response = "" for ele in "".join(res): progressive_response += ele + "" yield chat_history + [(query, progressive_response)] with gr.Blocks() as demo: gr.HTML( """

Welcome to AI PDF Assistant

""" ) gr.Markdown( "AI Assistant for PDF documents. Upload your pdf document, click 'Process PDF docs' and wait for success confirmation message.
" "After success confirmation, click on the 'AI Assistant' tab to interact with your document.
" "Type your query, and hit enter. Click on 'Clear Chat History' to delete all previous conversations." ) with gr.Tab("Upload/Process PDF documents"): text_input = gr.File(label="Upload PDF file", file_types=[".pdf"]) text_output = gr.Textbox(label="Status...") text_button = gr.Button("Process PDF docs!") text_button.click(pdf_loader, text_input, text_output) with gr.Tab("AI Assistant"): chatbot = gr.Chatbot() query = gr.Textbox( label="Type your query here, then press 'enter' and scroll up for response" ) clear = gr.Button("Clear Chat History!") query.submit(chat, [chatbot, query], chatbot) clear.click(lambda: None, None, chatbot, queue=False) demo.queue().launch()