File size: 4,826 Bytes
54af26b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926eaab
54af26b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import warnings

warnings.filterwarnings("ignore")
import os, requests, openai, cohere
import gradio as gr
from pathlib import Path
from langchain.document_loaders import YoutubeLoader
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import CohereEmbeddings
from langchain.vectorstores import Qdrant
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.summarize import load_summarize_chain

COHERE_API_KEY = os.environ["COHERE_API_KEY"]
QDRANT_API_KEY = os.environ["QDRANT_API_KEY"]
QDRANT_CLUSTER_URL = os.environ["QDRANT_CLUSTER_URL"]
QDRANT_COLLECTION_NAME = os.environ["QDRANT_COLLECTION_NAME"]
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
prompt_file = "prompt_template.txt"


def yt_loader(yt_url):
    res = requests.get(f"https://www.youtube.com/oembed?url={yt_url}")
    if res.status_code != 200:
        yield "Invalid Youtube URL. Kindly, paste here a valid Youtube URL."
        return

    yield "Extracting transcript from youtube url..."
    loader = YoutubeLoader.from_youtube_url(yt_url, add_video_info=True)
    transcript = loader.load()

    video_id = transcript[0].metadata["source"]
    title = transcript[0].metadata["title"]
    author = transcript[0].metadata["author"]

    docs = []
    for i in range(len(transcript)):
        doc = Document(page_content=transcript[i].page_content)
        docs.append(doc)

    yield "Splitting transcript into chunks of text..."
    text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
        model_name="gpt-3.5-turbo",
        chunk_size=1024,
        chunk_overlap=64,
        separators=["\n\n", "\n", " "],
    )

    docs_splitter = text_splitter.split_documents(docs)
    cohere_embeddings = CohereEmbeddings(model="large", cohere_api_key=COHERE_API_KEY)

    yield "Uploading chunks of text into Qdrant..."
    qdrant = Qdrant.from_documents(
        docs_splitter,
        cohere_embeddings,
        url=QDRANT_CLUSTER_URL,
        prefer_grpc=True,
        api_key=QDRANT_API_KEY,
        collection_name=QDRANT_COLLECTION_NAME,
    )

    with open(prompt_file, "r") as file:
        prompt_template = file.read()

    PROMPT = PromptTemplate(
        template=prompt_template, input_variables=["question", "context"]
    )

    llm = ChatOpenAI(
        model_name="gpt-3.5-turbo", temperature=0, openai_api_key=OPENAI_API_KEY
    )
    global qa
    qa = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=qdrant.as_retriever(),
        chain_type_kwargs={"prompt": PROMPT},
    )

    yield "Generating summarized text from transcript..."
    chain = load_summarize_chain(llm=llm, chain_type="map_reduce")
    summarized_text = chain.run(docs_splitter)
    res = (
        "Video ID: "
        + video_id
        + "\n"
        + "Video Title: "
        + title
        + "\n"
        + "Channel Name: "
        + author
        + "\n"
        + "Summarized Text: "
        + summarized_text
    )
    yield res


def chat(chat_history, query):
    res = qa.run(query)
    progressive_response = ""

    for ele in "".join(res):
        progressive_response += ele + ""
        yield chat_history + [(query, progressive_response)]


with gr.Blocks() as demo:
    gr.HTML("""<h1>Welcome to AI Youtube Assistant</h1>""")
    gr.Markdown(
        "Generate transcript from youtube url. Get a summarized text of the video transcript and also ask questions to AI Youtube Assistant.<br>"
        "Click on 'Build AI Bot' to extract transcript from youtube url and get a summarized text.<br>"
        "After summarized text is generated, click on 'AI Assistant' tab and ask queries to the AI Assistant regarding information in the youtube video."
    )

    with gr.Tab("Load/Summarize Youtube Video"):
        text_input = gr.Textbox(
            label="Paste a valid youtube url",
            placeholder="https://www.youtube.com/watch?v=AeJ9q45PfD0",
        )
        text_output = gr.Textbox(label="Summarized transcript of the youtube video")
        text_button = gr.Button(value="Build AI Bot!")
        text_button.click(yt_loader, text_input, text_output)

    with gr.Tab("AI Assistant"):
        chatbot = gr.Chatbot()
        query = gr.Textbox(
            label="Type your query here, then press 'enter' and scroll up for response"
        )
        chat_button = gr.Button(value="Submit Query!")
        clear = gr.Button(value="Clear Chat History!")
        # clear.style(size="sm")
        query.submit(chat, [chatbot, query], chatbot)
        chat_button.click(chat, [chatbot, query], chatbot)
        clear.click(lambda: None, None, chatbot, queue=False)


demo.queue().launch()