Spaces:
Running
Running
import whisper | |
import gradio as gr | |
import openai | |
from TTS.api import TTS | |
import subprocess | |
model_name = TTS.list_models()[9] | |
tts = TTS(model_name) | |
model = whisper.load_model('medium') | |
def run_ffmpeg_command(): | |
command = ['ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono', '-t', '1', '-q:a', '9', '-acodec', 'libmp3lame', 'output.wav'] | |
result = subprocess.run(command, capture_output=True, text=True) | |
print(result.stdout) | |
def voice_chat(api_key, user_voice): | |
openai.api_key = str(api_key) | |
messages = [ | |
{"role": "system", "content": "You are a kind helpful assistant."}, | |
] | |
user_message = model.transcribe(user_voice)["text"] | |
messages.append( | |
{"role": "user", "content": user_message}, | |
) | |
chat = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", messages=messages | |
) | |
reply = chat.choices[0].message.content | |
messages.append({"role": "assistant", "content": reply}) | |
tts.tts_to_file(text=reply, file_path="output.wav") | |
return(reply, "output.wav") | |
# run_ffmpeg_command() | |
text_reply = gr.Textbox(label="Summarized Answer") | |
voice_reply = gr.Audio(type="filepath") | |
gr.Interface( | |
title = 'Smart Voice Assistant', | |
fn=voice_chat, | |
inputs=[ | |
gr.Textbox(label="OpenAI API Key"), | |
gr.Audio(source="microphone", type="filepath") | |
], | |
outputs=[ | |
text_reply, voice_reply | |
]).launch() |