ovi054 commited on
Commit
411ddb3
·
verified ·
1 Parent(s): 56874eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -2
app.py CHANGED
@@ -4,6 +4,9 @@ import torch
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
 
 
 
7
 
8
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
9
 
@@ -12,6 +15,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
12
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
13
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
14
 
 
 
15
  def generate_caption(image):
16
  if not isinstance(image, Image.Image):
17
  image = Image.fromarray(image)
@@ -31,10 +36,29 @@ def generate_caption(image):
31
  task="<MORE_DETAILED_CAPTION>",
32
  image_size=(image.width, image.height)
33
  )
34
- return parsed_answer["<MORE_DETAILED_CAPTION>"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  io = gr.Interface(generate_caption,
37
  inputs=[gr.Image(label="Input Image")],
38
- outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True)]
 
39
  )
40
  io.launch(debug=True)
 
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
7
+ import os
8
+ from gradio_client import Client
9
+
10
 
11
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
 
 
15
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
16
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
17
 
18
+ api_key = os.getenv("HF_READ_TOKEN")
19
+
20
  def generate_caption(image):
21
  if not isinstance(image, Image.Image):
22
  image = Image.fromarray(image)
 
36
  task="<MORE_DETAILED_CAPTION>",
37
  image_size=(image.width, image.height)
38
  )
39
+ prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
40
+ yield prompt, None
41
+ image_path = generate_image(prompt,random.randint(0, 4294967296))
42
+ yield prompt, image_path
43
+
44
+ def generate_image(prompt, seed=42, width=1024, height=1024):
45
+ try:
46
+ result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict(
47
+ prompt=prompt,
48
+ seed=seed,
49
+ width=width,
50
+ height=height,
51
+ api_name="/generate_image"
52
+ )
53
+ # Extract the image path from the result tuple
54
+ image_path = result[0]
55
+ return image_path
56
+ except Exception as e:
57
+ raise Exception(f"Error generating image: {str(e)}")
58
 
59
  io = gr.Interface(generate_caption,
60
  inputs=[gr.Image(label="Input Image")],
61
+ outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
62
+ gr.Image(label="Output Image")]
63
  )
64
  io.launch(debug=True)