Spaces:
Sleeping
Sleeping
import streamlit as st | |
from ultralytics import YOLO | |
import tempfile | |
import pandas as pd | |
model = YOLO('best.pt') | |
st.title('Spare-it Segmentation Model') | |
# Performance table data | |
st.header("Best Model Performance") | |
df = pd.read_csv('performance_table.csv') | |
st.dataframe(df) | |
with st.expander("See Example Results"): | |
st.write("Here are some example images with detections:") | |
st.image('example1.jpg') | |
st.image('example2.jpg') | |
st.image('example3.jpg') | |
st.image('example4.jpg') | |
st.image('example5.jpg') | |
input_method = st.radio("Choose the input method:", ("Upload an Image", "Take a Picture")) | |
if input_method == "Upload an Image": | |
image_data = st.file_uploader("Upload an image", type=['jpg', 'jpeg', 'png']) | |
elif input_method == "Take a Picture": | |
image_data = st.camera_input("Take a picture") | |
if image_data is not None: | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file: | |
tmp_file.write(image_data.getvalue()) | |
image_path = tmp_file.name | |
results = model(image_path) | |
category_names = results[0].names | |
predictions = {} | |
for cls_id, conf in zip(results[0].boxes.cls, results[0].boxes.conf): | |
cls_id = int(cls_id) | |
conf = float(conf) | |
class_name = category_names[cls_id] | |
if class_name in predictions: | |
predictions[class_name].append(conf) | |
else: | |
predictions[class_name] = [conf] | |
num_masks = len(results[0].masks.data) | |
st.write(f"Total {num_masks} objects found.") | |
for category, confidences in predictions.items(): | |
st.write(f"{len(confidences)} {category}: {['{:.2f}'.format(c) for c in confidences]}") | |
for result in results: | |
plotted_img = result.plot() | |
st.image(plotted_img, caption='Segmented Image', use_container_width =True) | |