henryholloway
commited on
Commit
·
9e0a736
1
Parent(s):
a002825
UI Updates
Browse files
app.py
CHANGED
@@ -30,9 +30,7 @@ precision_options = {
|
|
30 |
# Streamlit app
|
31 |
st.title("Memory Usage Calculator for Large Language Models")
|
32 |
|
33 |
-
|
34 |
-
layers = st.number_input("Number of Layers", value=32, step=1)
|
35 |
-
attention_heads = st.number_input("Number of Attention Heads", value=32, step=1)
|
36 |
|
37 |
# Taken from "Reducing Activation Recomputation in Large Transformer Models" https://arxiv.org/abs/2205.05198
|
38 |
def calculate_memory_usage(parameter_count, context_length, data_type, batch_size, vocab_size, precision):
|
@@ -69,6 +67,8 @@ def calculate_activations(parameter_count, context_length, batch_size, vocab_siz
|
|
69 |
|
70 |
# User inputs
|
71 |
parameter_count = st.number_input("Parameter Count (in billions)", value=1, step=1) * 1e9
|
|
|
|
|
72 |
context_length = st.number_input("Context Length (number of tokens)", value=512, step=1)
|
73 |
data_type = st.selectbox("Data Type", options=list(quantization_bit_sizes.keys()))
|
74 |
batch_size = st.number_input("Batch Size", value=1, step=1)
|
|
|
30 |
# Streamlit app
|
31 |
st.title("Memory Usage Calculator for Large Language Models")
|
32 |
|
33 |
+
|
|
|
|
|
34 |
|
35 |
# Taken from "Reducing Activation Recomputation in Large Transformer Models" https://arxiv.org/abs/2205.05198
|
36 |
def calculate_memory_usage(parameter_count, context_length, data_type, batch_size, vocab_size, precision):
|
|
|
67 |
|
68 |
# User inputs
|
69 |
parameter_count = st.number_input("Parameter Count (in billions)", value=1, step=1) * 1e9
|
70 |
+
layers = st.number_input("Number of Layers", value=32, step=1)
|
71 |
+
attention_heads = st.number_input("Number of Attention Heads", value=32, step=1)
|
72 |
context_length = st.number_input("Context Length (number of tokens)", value=512, step=1)
|
73 |
data_type = st.selectbox("Data Type", options=list(quantization_bit_sizes.keys()))
|
74 |
batch_size = st.number_input("Batch Size", value=1, step=1)
|