import functools import os import numpy as np import tensorflow.compat.v2 as tf import functools import gin import jax import librosa import note_seq import seqio import t5 import t5x from mt3 import metrics_utils from mt3 import models from mt3 import network from mt3 import note_sequences from mt3 import preprocessors from mt3 import spectrograms from mt3 import vocabularies import nest_asyncio nest_asyncio.apply() SAMPLE_RATE = 16000 SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2' def upload_audio(audio, sample_rate): return note_seq.audio_io.wav_data_to_samples_librosa( audio, sample_rate=sample_rate) class InferenceModel(object): """Wrapper of T5X model for music transcription.""" def __init__(self, checkpoint_path, model_type='mt3'): # Model Constants. # two and only two elements needed in list gin_files. gin_files = ['/home/user/app/mt3/gin/model.gin'] # append another element here in if block. if model_type == 'mt3': num_velocity_bins = 1 self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec self.inputs_length = 256 gin_files.append('/home/user/app/mt3/gin/mt3.gin') elif model_type == 'ismir2021': num_velocity_bins = 127 self.encoding_spec = note_sequences.NoteEncodingSpec self.inputs_length = 512 gin_files.append('/home/user/app/mt3/gin/ismir2021.gin') else: raise ValueError('unknown model_type: %s' % model_type) gin_files.append('/home/user/app/mt3/gin/mt3.gin') self.batch_size = 8 self.outputs_length = 1024 self.sequence_length = {'inputs': self.inputs_length, 'targets': self.outputs_length} self.partitioner = t5x.partitioning.PjitPartitioner( model_parallel_submesh=None, num_partitions=1) # Build Codecs and Vocabularies. self.spectrogram_config = spectrograms.SpectrogramConfig() self.codec = vocabularies.build_codec( vocab_config=vocabularies.VocabularyConfig( num_velocity_bins=num_velocity_bins)) self.vocabulary = vocabularies.vocabulary_from_codec(self.codec) self.output_features = { 'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2), 'targets': seqio.Feature(vocabulary=self.vocabulary), } # Create a T5X model. self._parse_gin(gin_files) self.model = self._load_model() # Restore from checkpoint. self.restore_from_checkpoint(checkpoint_path) @property def input_shapes(self): return { 'encoder_input_tokens': (self.batch_size, self.inputs_length), 'decoder_input_tokens': (self.batch_size, self.outputs_length) } def _parse_gin(self, gin_files): """Parse gin files used to train the model.""" gin_bindings = [ 'from __gin__ import dynamic_registration', 'from mt3 import vocabularies', 'VOCAB_CONFIG=@vocabularies.VocabularyConfig()', 'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS' ] with gin.unlock_config(): gin.parse_config_files_and_bindings( gin_files, gin_bindings, finalize_config=False) def _load_model(self): """Load up a T5X `Model` after parsing training gin config.""" model_config = gin.get_configurable(network.T5Config)() module = network.Transformer(config=model_config) return models.ContinuousInputsEncoderDecoderModel( module=module, input_vocabulary=self.output_features['inputs'].vocabulary, output_vocabulary=self.output_features['targets'].vocabulary, optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0), input_depth=spectrograms.input_depth(self.spectrogram_config)) def restore_from_checkpoint(self, checkpoint_path): """Restore training state from checkpoint, resets self._predict_fn().""" train_state_initializer = t5x.utils.TrainStateInitializer( optimizer_def=self.model.optimizer_def, init_fn=self.model.get_initial_variables, input_shapes=self.input_shapes, partitioner=self.partitioner) restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig( path=checkpoint_path, mode='specific', dtype='float32') train_state_axes = train_state_initializer.train_state_axes self._predict_fn = self._get_predict_fn(train_state_axes) self._train_state = train_state_initializer.from_checkpoint_or_scratch( [restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0)) @functools.lru_cache() def _get_predict_fn(self, train_state_axes): """Generate a partitioned prediction function for decoding.""" def partial_predict_fn(params, batch, decode_rng): return self.model.predict_batch_with_aux( params, batch, decoder_params={'decode_rng': None}) return self.partitioner.partition( partial_predict_fn, in_axis_resources=( train_state_axes.params, t5x.partitioning.PartitionSpec('data',), None), out_axis_resources=t5x.partitioning.PartitionSpec('data',) ) def predict_tokens(self, batch, seed=0): """Predict tokens from preprocessed dataset batch.""" prediction, _ = self._predict_fn( self._train_state.params, batch, jax.random.PRNGKey(seed)) return self.vocabulary.decode_tf(prediction).numpy() def __call__(self, audio): """Infer note sequence from audio samples. Args: audio: 1-d numpy array of audio samples (16kHz) for a single example. Returns: A note_sequence of the transcribed audio. """ ds = self.audio_to_dataset(audio) ds = self.preprocess(ds) model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)( ds, task_feature_lengths=self.sequence_length) model_ds = model_ds.batch(self.batch_size) inferences = (tokens for batch in model_ds.as_numpy_iterator() for tokens in self.predict_tokens(batch)) predictions = [] for example, tokens in zip(ds.as_numpy_iterator(), inferences): predictions.append(self.postprocess(tokens, example)) result = metrics_utils.event_predictions_to_ns( predictions, codec=self.codec, encoding_spec=self.encoding_spec) return result['est_ns'] def audio_to_dataset(self, audio): """Create a TF Dataset of spectrograms from input audio.""" frames, frame_times = self._audio_to_frames(audio) return tf.data.Dataset.from_tensors({ 'inputs': frames, 'input_times': frame_times, }) def _audio_to_frames(self, audio): """Compute spectrogram frames from audio.""" frame_size = self.spectrogram_config.hop_width padding = [0, frame_size - len(audio) % frame_size] audio = np.pad(audio, padding, mode='constant') frames = spectrograms.split_audio(audio, self.spectrogram_config) num_frames = len(audio) // frame_size times = np.arange(num_frames) / self.spectrogram_config.frames_per_second return frames, times def preprocess(self, ds): pp_chain = [ functools.partial( t5.data.preprocessors.split_tokens_to_inputs_length, sequence_length=self.sequence_length, output_features=self.output_features, feature_key='inputs', additional_feature_keys=['input_times']), # Cache occurs here during training. preprocessors.add_dummy_targets, functools.partial( preprocessors.compute_spectrograms, spectrogram_config=self.spectrogram_config) ] for pp in pp_chain: ds = pp(ds) return ds def postprocess(self, tokens, example): tokens = self._trim_eos(tokens) start_time = example['input_times'][0] # Round down to nearest symbolic token step. start_time -= start_time % (1 / self.codec.steps_per_second) return { 'est_tokens': tokens, 'start_time': start_time, # Internal MT3 code expects raw inputs, not used here. 'raw_inputs': [] } @staticmethod def _trim_eos(tokens): tokens = np.array(tokens, np.int32) if vocabularies.DECODED_EOS_ID in tokens: tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)] return tokens