|
import gradio as gr |
|
import numpy as np |
|
import joblib |
|
|
|
|
|
model = joblib.load('titanic.pkl') |
|
|
|
def predict_survival(sex, age, fare, pclass, sibsp): |
|
|
|
|
|
sex = 1 if sex == "Masculino" else 0 |
|
|
|
|
|
input_features = np.array([[sex, age, fare, pclass, sibsp]]) |
|
|
|
|
|
prediction = model.predict(input_features) |
|
|
|
|
|
result = 'Sobrevive' if prediction[0] == 1 else 'No sobrevive' |
|
return result |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_survival, |
|
inputs=[ |
|
gr.components.Dropdown(choices=["Masculino", "Femenino"], label="Sexo"), |
|
gr.components.Slider(minimum=0, maximum=100, step=1, value=28, label="Edad"), |
|
gr.components.Slider(minimum=0, maximum=512, step=1, value=33, label="Tarifa"), |
|
gr.components.Dropdown(choices=[1, 2, 3], label="Clase del Pasajero"), |
|
gr.components.Slider(minimum=0, maximum=8, step=1, value=0, label="Hermanos/C贸nyuges a bordo") |
|
], |
|
outputs=gr.components.Textbox(label="Predicci贸n de Supervivencia") |
|
) |
|
|
|
|
|
iface.launch() |
|
|