File size: 2,542 Bytes
0323180
d347764
 
 
0323180
 
 
 
 
d347764
 
 
0323180
 
d347764
 
0323180
 
21f0bae
0323180
 
 
d347764
0323180
d347764
0323180
 
d347764
 
0323180
 
 
d347764
0323180
 
d347764
0323180
 
d347764
0323180
 
 
 
 
 
 
 
d347764
 
 
 
 
 
0323180
d347764
 
f805e49
 
50e4622
 
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
0323180
c737803
 
0323180
c737803
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import gradio as gr
import numpy as np

from transformers import (
    VitsModel,
    VitsTokenizer,
    pipeline,
)


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f"Using {device} with fp {torch_dtype}")

# load speech translation checkpoint
asr_pipe = pipeline(  # noqa: F821
    "automatic-speech-recognition",
    model="openai/whisper-medium",
    device=device,
    torch_dtype=torch_dtype,
)

# load text-to-speech checkpoint

model = VitsModel.from_pretrained("facebook/mms-tts-zlm")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-zlm")


def synthesise(text):
    inputs = tokenizer(text=text, return_tensors="pt")
    input_ids = inputs["input_ids"]

    with torch.no_grad():
        outputs = model(input_ids)

    speech = outputs["waveform"]
    return speech


def translate(audio):
    outputs = asr_pipe(
        audio,
        max_new_tokens=256,
        generate_kwargs={"task": "transcribe", "language": "ms"},
    )
    return outputs["text"]


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech.T


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in **Malay**. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebooks's
[MMS-TTS-ZLM](https://huggingface.co/facebook/mms-tts-zlm) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples="./examples",
    title=title,
    description=description,
    live=True,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()