accelerate_examples / code_samples /base /gradient_accumulation
muellerzr's picture
muellerzr HF staff
Add comma between optimizer, scheduler as reported in https://github.com/huggingface/accelerate/issues/2661
13e3de7
##
<pre>
from accelerate import Accelerator
accelerator = Accelerator(
+ gradient_accumulation_steps=2,
)
dataloader, model, optimizer, scheduler = accelerator.prepare(
dataloader, model, optimizer, scheduler
)
for batch in dataloader:
+ with accelerator.accumulate(model):
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
optimizer.zero_grad()</pre>
##
When performing gradient accumulation in a distributed setup, there are many opportunities for efficiency mistakes
to occur. `Accelerator` provides a context manager that will take care of the details for you and ensure that the
model is training correctly. Simply wrap the training loop in the `Accelerator.accumulate` context manager
while passing in the model you are training on and during training the gradients will accumulate and synchronize
automatically when needed.
##
To learn more checkout the related documentation:
- <a href="https://huggingface.co/docs/accelerate/usage_guides/gradient_accumulation" target="_blank">Performing gradient accumulation</a>
- <a href="https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.accumulate" target="_blank">API reference</a>
- <a href="https://github.com/huggingface/accelerate/blob/main/examples/by_feature/gradient_accumulation.py" target="_blank">Example script</a>
- <a href="https://github.com/huggingface/accelerate/blob/main/examples/by_feature/automatic_gradient_accumulation.py" target="_blank">Performing automatic gradient accumulation example script</a>