Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,161 Bytes
0dea527 c55db66 0dea527 6b9c5c7 27e2fc4 6b9c5c7 0dea527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# Utilities related to searching and posting on the Hub
import os
import webbrowser
import pandas as pd
from huggingface_hub import HfApi
from model_utils import calculate_memory, extract_from_url, get_model
def check_for_discussion(model_name: str):
"Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
api = HfApi(token=os.environ.get("HUGGINGFACE_API_LOGIN", None))
model_name = extract_from_url(model_name)
discussions = list(api.get_repo_discussions(model_name))
return any(
discussion.author == "model-sizer-bot"
for discussion in discussions
)
def report_results(model_name, library, access_token):
"Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
model = get_model(model_name, library, access_token)
data = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"])
df = pd.DataFrame(data).to_markdown(index=False)
post = f"""# Model Memory Requirements\n
You will need about {data[1]} VRAM to load this model for inference, and {data[3]} VRAM to train it using Adam.
These calculations were measured from the [Model Memory Utility Space](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) on the Hub.
The minimum recommended vRAM needed for this model assumes using [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) and is denoted by the size of the "largest layer".
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.
When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).
## Results:
{df}
"""
api = HfApi(token=os.environ.get("HUGGINGFACE_API_LOGIN", None))
discussion = api.create_discussion(model_name, "[AUTOMATED] Model Memory Requirements", description=post)
webbrowser.open_new_tab(discussion.url)
|