import torch from transformers import pipeline import numpy as np import gradio as gr def _grab_best_device(use_gpu=True): if torch.cuda.device_count() > 0 and use_gpu: device = "cuda" else: device = "cpu" return device device = _grab_best_device() default_model_per_language = { "english": "kakao-enterprise/vits-ljs", "spanish": "facebook/mms-tts-spa", "tamil": "facebook/mms-tts-tam", "gujarati": "facebook/mms-tts-guj", "marathi": "facebook/mms-tts-mar" } models_per_language = { "english": [ "ylacombe/vits_ljs_irish_male_monospeaker_2", "ylacombe/vits_ljs_irish_male_monospeaker_2", "ylacombe/vits_ljs_welsh_female_monospeaker_2", "ylacombe/vits_ljs_welsh_male_monospeaker_2", "ylacombe/vits_ljs_scottish_female_monospeaker", ], "spanish": [ "ylacombe/mms-spa-finetuned-chilean-monospeaker", ], "tamil": [ "ylacombe/mms-tam-finetuned-monospeaker", ], "gujarati" : ["ylacombe/mms-guj-finetuned-monospeaker"], "marathi": ["ylacombe/mms-mar-finetuned-monospeaker"] } HUB_PATH = "ylacombe/vits_ljs_welsh_female_monospeaker_2" pipe_dict = { "current_model": "ylacombe/vits_ljs_welsh_female_monospeaker_2", "pipe": pipeline("text-to-speech", model=HUB_PATH, device=0), "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=0), "language": "english", } title = "# 🐶 VITS" max_speakers = 15 description = """ """ # Inference def generate_audio(text, model_id, language): if pipe_dict["language"] != language: gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}") pipe_dict["language"] = language pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=0) if pipe_dict["current_model"] != model_id: gr.Warning("Model has changed - loading new model") pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=0) pipe_dict["current_model"] = model_id num_speakers = pipe_dict["pipe"].model.config.num_speakers out = [] # first generate original model result output = pipe_dict["original_pipe"](text) output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True, visible=True) out.append(output) if num_speakers>1: for i in range(min(num_speakers, max_speakers - 1)): forward_params = {"speaker_id": i} output = pipe_dict["pipe"](text, forward_params=forward_params) output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=True) out.append(output) out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers)) else: output = pipe_dict["pipe"](text) output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True, visible=True) out.append(output) out.extend([gr.Audio(visible=False)]*(max_speakers-2)) return out # Gradio blocks demo with gr.Blocks() as demo_blocks: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(): inp_text = gr.Textbox(label="Input Text", info="What would you like VITS to synthesise?") btn = gr.Button("Generate Audio!") language = gr.Dropdown( default_model_per_language.keys(), value = "english", label = "language", info = "Language that you want to test" ) model_id = gr.Dropdown( models_per_language["english"], value="ylacombe/vits_ljs_welsh_female_monospeaker_2", label="Model", info="Model you want to test", ) with gr.Column(): outputs = [] for i in range(max_speakers): out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False) outputs.append(out_audio) language.change(lambda language: gr.Dropdown( models_per_language[language], value=models_per_language[language][0], label="Model", info="Model you want to test", ), language, model_id ) btn.click(generate_audio, [inp_text, model_id, language], outputs) demo_blocks.queue().launch()