import torch from transformers import pipeline import numpy as np import gradio as gr def _grab_best_device(use_gpu=True): if torch.cuda.device_count() > 0 and use_gpu: device = "cuda" else: device = "cpu" return device device = _grab_best_device() HUB_PATH = "ylacombe/vits_vctk_welsh_male" pipe_dict = { "current_model": "ylacombe/vits_vctk_welsh_male", "pipe": pipeline("text-to-speech", model=HUB_PATH, device=0), } title = "# 🐶 VITS" description = """ """ max_speakers = 15 # Inference def generate_audio(text, model_id): if pipe_dict["current_model"] != model_id: gr.Warning("Model has changed - loading new model") pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=0) pipe_dict["current_model"] = model_id num_speakers = pipe_dict["pipe"].model.config.num_speakers out = [] for i in range(min(num_speakers, max_speakers)): forward_params = {"speaker_id": i} output = pipe_dict["pipe"](text, forward_params=forward_params) output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=True) out.append(output) out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers)) return out # Gradio blocks demo with gr.Blocks() as demo_blocks: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(): inp_text = gr.Textbox(label="Input Text", info="What would you like bark to synthesise?") btn = gr.Button("Generate Audio!") model_id = gr.Dropdown( [ "ylacombe/vits_vctk_welsh_male", "ylacombe/vits_vctk_welsh_female", "ylacombe/vits_ljs_welsh_male", "ylacombe/vits_ljs_welsh_female", "ylacombe/vits_vctk_irish_male", "ylacombe/vits_vctk_scottish_female", "ylacombe/vits_ljs_irish_male", "ylacombe/vits_ljs_scottish_female", "ylacombe/mms-tam-finetuned-multispeaker", "ylacombe/mms-spa-finetuned-chilean-multispeaker", ], value="ylacombe/vits_vctk_welsh_male", label="Model", info="Model you want to test", ) with gr.Column(): outputs = [] for i in range(max_speakers): out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False) outputs.append(out_audio) btn.click(generate_audio, [inp_text, model_id], outputs) demo_blocks.queue().launch()