File size: 5,481 Bytes
b064a39
 
 
 
 
 
 
 
2deac9d
b064a39
 
 
5ccc223
2deac9d
b064a39
 
 
 
 
 
 
 
2deac9d
b064a39
 
 
 
 
 
 
 
 
 
 
c7a80b8
e7d7265
 
 
b064a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2deac9d
 
b064a39
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import pandas as pd
import json
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone

LAST_UPDATED = "Aug 12th 2024"

column_names = {
    "MODEL": "Model",
    "Avg. WER": "Average WER ⬇️",    
    "Avg. RTFx": "RTFx ⬆️️",
    "AMI WER": "AMI",
    "Earnings22 WER": "Earnings22",
    "Gigaspeech WER": "Gigaspeech",
    "LS Clean WER": "LS Clean",
    "LS Other WER": "LS Other",
    "SPGISpeech WER": "SPGISpeech",
    "Tedlium WER": "Tedlium",
    "Voxpopuli WER": "Voxpopuli",
}

eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()

if not csv_results.exists():
    raise Exception(f"CSV file {csv_results} does not exist locally")
    
# Get csv with data and parse columns
original_df = pd.read_csv(csv_results)

# Formats the columns
def formatter(x):
    if type(x) is str:
        x = x
    else: 
        x = round(x, 2)
    return x

for col in original_df.columns:
    if col == "model":
        original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
    else:
        original_df[col] = original_df[col].apply(formatter) # For numerical values
 
original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Average WER ⬇️', inplace=True)

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]


def request_model(model_text, chbcoco2017):
    
    # Determine the selected checkboxes
    dataset_selection = []
    if chbcoco2017:
        dataset_selection.append("ESB Datasets tests only")

    if len(dataset_selection) == 0:
        return styled_error("You need to select at least one dataset")
        
    base_model_on_hub, error_msg = is_model_on_hub(model_text)

    if not base_model_on_hub:
        return styled_error(f"Base model '{model_text}' {error_msg}")
    
    # Construct the output dictionary
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    required_datasets = ', '.join(dataset_selection)
    eval_entry = {
        "date": current_time,
        "model": model_text,
        "datasets_selected": required_datasets
    }
    
    # Prepare file path 
    DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
    
    fn_datasets = '@ '.join(dataset_selection)
    filename = model_text.replace("/","@") + "@@" + fn_datasets 
    if filename in requested_models:
        return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
    try:
        filename_ext = filename + ".txt"
        out_filepath = DIR_OUTPUT_REQUESTS / filename_ext

        # Write the results to a text file
        with open(out_filepath, "w") as f:
            f.write(json.dumps(eval_entry))
            
        upload_file(filename, out_filepath)
        
        # Include file in the list of uploaded files
        requested_models.append(filename)
        
        # Remove the local file
        out_filepath.unlink()

        return styled_message("πŸ€— Your request has been submitted and will be evaluated soon!</p>")
    except Exception as e:
        return styled_error(f"Error submitting request!")

with gr.Blocks() as demo:
    gr.HTML(BANNER, elem_id="banner")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                )

        with gr.TabItem("πŸ“ˆ Metrics", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")

        with gr.TabItem("βœ‰οΈβœ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2):
            with gr.Column():
                gr.Markdown("# βœ‰οΈβœ¨ Request results for a new model here!", elem_classes="markdown-text")
            with gr.Column():
                gr.Markdown("Select a dataset:", elem_classes="markdown-text")
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
                    chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False)
                with gr.Column():
                    mdw_submission_result = gr.Markdown()
                    btn_submitt = gr.Button(value="πŸš€ Request")
                    btn_submitt.click(request_model, 
                                      [model_name_textbox, chb_coco2017], 
                                      mdw_submission_result)

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
    
    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.launch()