from transformers import pipeline, set_seed import gradio as grad gpt2_pipe = pipeline('text-generation', model = 'distilgpt2') set_seed(42) def generate(starting_text): response = gpt2_pipe(starting_text, max_length = 20, num_return_sequences = 5) return response txt = grad.Textbox(lines = 1, label = 'English', placeholder = 'English Text Here') out = grad.Textbox(lines = 1, label = 'Generated Text') grad.Interface( generate, inputs = txt, outputs = out ).launch()