File size: 9,680 Bytes
f4c8685
dad89e4
f4c8685
 
 
 
7c4e98c
f4c8685
 
 
6868ece
f4c8685
0d5194e
f4c8685
 
dad89e4
 
e239738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e616d
e239738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c8685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4e98c
 
0670634
 
 
 
 
 
9baeb63
 
3020ad1
506e32d
 
 
5c5363c
9baeb63
0670634
9baeb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0670634
 
dad89e4
 
 
 
 
9baeb63
dad89e4
 
 
6868ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9baeb63
6868ece
9baeb63
6868ece
0670634
 
 
 
 
c66809e
0670634
 
 
 
 
 
e239738
 
0670634
 
 
 
9baeb63
0670634
9baeb63
 
 
 
 
0670634
 
 
c66809e
 
 
 
801318e
c66809e
9baeb63
 
 
 
0670634
f4c8685
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import json
from urllib import request
from fastapi import FastAPI
from starlette.middleware.sessions import SessionMiddleware
from starlette.responses import HTMLResponse, RedirectResponse
from starlette.requests import Request
import gradio as gr
import uvicorn
from fastapi.responses import HTMLResponse
from fastapi.responses import RedirectResponse
import pandas as pd

import spotipy
from spotipy import oauth2

import heatmap

import numpy as np

import matplotlib.pyplot as plt
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D
import matplotlib

matplotlib.use('SVG')


def get_features2(spotify):
    features = []
    for index in range(0, 10):
        results = spotify.current_user_saved_tracks(offset=index*50, limit=50)
        track_ids = [item['track']['id'] for item in results['items']]
        features.extend(spotify.audio_features(track_ids))

    df = pd.DataFrame(data=features)
    names = [
        'danceability', 
        'energy',
        # 'loudness',
        'speechiness',
        'acousticness',
        'instrumentalness',
        'liveness',
        'valence',
    ]
    features_means = df[names].mean()
    return names, features_means.values


def radar_factory(num_vars, frame='circle'):
    """
    Create a radar chart with `num_vars` axes.

    This function creates a RadarAxes projection and registers it.

    Parameters
    ----------
    num_vars : int
        Number of variables for radar chart.
    frame : {'circle', 'polygon'}
        Shape of frame surrounding axes.

    """
    # calculate evenly-spaced axis angles
    theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)

    class RadarTransform(PolarAxes.PolarTransform):

        def transform_path_non_affine(self, path):
            # Paths with non-unit interpolation steps correspond to gridlines,
            # in which case we force interpolation (to defeat PolarTransform's
            # autoconversion to circular arcs).
            if path._interpolation_steps > 1:
                path = path.interpolated(num_vars)
            return Path(self.transform(path.vertices), path.codes)

    class RadarAxes(PolarAxes):

        name = 'radar'
        PolarTransform = RadarTransform

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            # rotate plot such that the first axis is at the top
            self.set_theta_zero_location('N')

        def fill(self, *args, closed=True, **kwargs):
            """Override fill so that line is closed by default"""
            return super().fill(closed=closed, *args, **kwargs)

        def plot(self, *args, **kwargs):
            """Override plot so that line is closed by default"""
            lines = super().plot(*args, **kwargs)
            for line in lines:
                self._close_line(line)

        def _close_line(self, line):
            x, y = line.get_data()
            # FIXME: markers at x[0], y[0] get doubled-up
            if x[0] != x[-1]:
                x = np.append(x, x[0])
                y = np.append(y, y[0])
                line.set_data(x, y)

        def set_varlabels(self, labels):
            self.set_thetagrids(np.degrees(theta), labels)

        def _gen_axes_patch(self):
            # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
            # in axes coordinates.
            if frame == 'circle':
                return Circle((0.5, 0.5), 0.5)
            elif frame == 'polygon':
                return RegularPolygon((0.5, 0.5), num_vars,
                                      radius=.5, edgecolor="k")
            else:
                raise ValueError("Unknown value for 'frame': %s" % frame)

        def _gen_axes_spines(self):
            if frame == 'circle':
                return super()._gen_axes_spines()
            elif frame == 'polygon':
                # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
                spine = Spine(axes=self,
                              spine_type='circle',
                              path=Path.unit_regular_polygon(num_vars))
                # unit_regular_polygon gives a polygon of radius 1 centered at
                # (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
                # 0.5) in axes coordinates.
                spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
                                    + self.transAxes)
                return {'polar': spine}
            else:
                raise ValueError("Unknown value for 'frame': %s" % frame)

    register_projection(RadarAxes)
    return theta

def get_spider_plot(request: gr.Request):
    token = request.request.session.get('token')
    sp = spotipy.Spotify(token)
    names, data = get_features2(sp)

    theta = radar_factory(len(names), frame='polygon')

    fig = plt.figure(figsize=(9, 9))
    ax = fig.add_axes([0, 0, 1, 1], projection='radar')

    # Plot the four cases from the example data on separate axes
    title = 'test'
    ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
    ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
                    horizontalalignment='center', verticalalignment='center')

    ax.plot(theta, data)
    ax.fill(theta, data, alpha=0.25, label='_nolegend_')

    ax.set_varlabels(names)

    return fig


PORT_NUMBER = 8080
SPOTIPY_CLIENT_ID = 'c087fa97cebb4f67b6f08ba841ed8378'
SPOTIPY_CLIENT_SECRET = 'ae27d6916d114ac4bb948bb6c58a72d9'
SPOTIPY_REDIRECT_URI = 'https://hf-hackathon-2023-01-spotify.hf.space'
SCOPE = 'user-library-read'

sp_oauth = oauth2.SpotifyOAuth(SPOTIPY_CLIENT_ID, SPOTIPY_CLIENT_SECRET, SPOTIPY_REDIRECT_URI, scope=SCOPE)

app = FastAPI()
app.add_middleware(SessionMiddleware, secret_key="w.o.w")

@app.get('/', response_class=HTMLResponse)
async def homepage(request: Request):
    token = request.session.get('token')
    if token:
        return RedirectResponse("/gradio")

    url = str(request.url)
    code = sp_oauth.parse_response_code(url)
    if code != url:
        token_info = sp_oauth.get_access_token(code)
        request.session['token'] = token_info['access_token']
        return RedirectResponse("/gradio")

    auth_url = sp_oauth.get_authorize_url()
    return "<a href='" + auth_url + "'>Login to Spotify</a>"



from vega_datasets import data

iris = data.iris()


def scatter_plot_fn_energy(request: gr.Request):
    
    token = request.request.session.get('token')
    if token:
        sp = spotipy.Spotify(token)
        results = sp.current_user()
        print(results)
    df = get_features(sp)
    return gr.ScatterPlot(
        value=df,
        x="danceability",
        y="energy"
    )

def scatter_plot_fn_liveness(request: gr.Request):
    token = request.request.session.get('token')
    if token:
        sp = spotipy.Spotify(token)
        results = sp.current_user()
        print(results)
    df = get_features(sp)
    return gr.ScatterPlot(
        value=df,
        x="acousticness",
        y="liveness"
    )

def heatmap_plot_fn(request: gr.Request):
    token = request.request.session.get('token')
    if token:
        sp = spotipy.Spotify(token)
        data = heatmap.build_heatmap(heatmap.fetch_recent_songs(sp))
        fig, ax = heatmap.plot(data)
        return fig


def get_features(spotify):
    features = []
    for index in range(0, 10):
        results = spotify.current_user_saved_tracks(offset=index*50, limit=50)
        track_ids = [item['track']['id'] for item in results['items']]
        features.extend(spotify.audio_features(track_ids))

    df = pd.DataFrame(data=features)
    names = [
        'danceability', 
        'energy',
        'loudness',
        'speechiness',
        'acousticness',
        'instrumentalness',
        'liveness',
        'valence',
        'tempo',
    ]
    
    # print (features_means.to_json())
    return df


##########
def get_started():
    # redirects to spotify and comes back
    # then generates plots
    return

with gr.Blocks() as demo:
    gr.Markdown(" ## Spotify Analyzer 🥳🎉")
    gr.Markdown("This app analyzes how cool your music taste is. We dare you to take this challenge!")
    with gr.Row():
        get_started_btn = gr.Button("Get Started")
    with gr.Row():
        spider_plot = gr.Plot()
    with gr.Row():
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    energy_plot = gr.ScatterPlot(show_label=False).style(container=True)
                with gr.Column():
                    liveness_plot = gr.ScatterPlot(show_label=False).style(container=True)
    with gr.Row():
        gr.Markdown(" ### We have recommendations for you!")
    with gr.Row():
        heatmap_plot = gr.Plot()
    with gr.Row():
        gr.Markdown(" ### We have recommendations for you!")
    with gr.Row():
        gr.Dataframe(
            headers=["Song", "Album", "Artist"],
            datatype=["str", "str", "str"],
            label="Reccomended Songs",
            value=[["something", "something", "something"], ["something", "something", "something"]]  # TODO: replace with actual reccomendations once get_started() is implemeted.
        )
    
    demo.load(fn=heatmap_plot_fn, outputs = heatmap_plot)
    demo.load(fn=scatter_plot_fn_energy, outputs = energy_plot)
    demo.load(fn=scatter_plot_fn_liveness, outputs = liveness_plot)


gradio_app = gr.mount_gradio_app(app, demo, "/gradio")
uvicorn.run(app, host="0.0.0.0", port=7860)