File size: 8,815 Bytes
c69cba4
 
 
 
 
 
 
 
 
 
d22d549
bfdf8df
 
 
c69cba4
 
 
 
 
 
bfdf8df
d22d549
 
 
 
 
 
 
 
c69cba4
 
 
 
 
 
 
 
bfdf8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69cba4
 
bfdf8df
 
c69cba4
 
 
 
 
 
 
 
 
 
d22d549
 
 
c69cba4
 
d22d549
 
c69cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfdf8df
c69cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22d549
bfdf8df
c69cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22d549
 
 
 
 
 
 
c69cba4
 
 
 
 
 
d22d549
 
bfdf8df
c69cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22d549
c69cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22d549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfdf8df
c69cba4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import math\n",
    "from pathlib import Path\n",
    "from datetime import datetime\n",
    "from typing import Any\n",
    "\n",
    "import numpy as np\n",
    "from tqdm import tqdm\n",
    "from langchain.chains import RetrievalQA\n",
    "from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings\n",
    "from langchain.document_loaders import TextLoader\n",
    "from langchain.indexes import VectorstoreIndexCreator\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores import FAISS\n",
    "from huggingface_hub import HfApi, snapshot_download"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Index building"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def collect_docs(directory: str, docs: list[str], metadata: list[Any]):\n",
    "    for p in Path(directory).iterdir():\n",
    "        if not p.is_dir():\n",
    "            with open(p) as f:\n",
    "                # the first line is the source of the text\n",
    "                source = f.readline().strip().replace('source: ', '')\n",
    "                docs.append(f.read())\n",
    "                metadata.append({\"source\": source})\n",
    "        # break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "DIRECTORIES = [\n",
    "    \"./datasets/huggingface_docs/\",\n",
    "    \"./datasets/huggingface_audio_transcribed/\"\n",
    "]\n",
    "\n",
    "docs = []\n",
    "metadata = []\n",
    "for directory in DIRECTORIES:\n",
    "    collect_docs(directory, docs, metadata)\n",
    "\n",
    "print(f'number of documents: {len(docs)}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# if split_chunk_size > 512 model is processing first 512 characters of the chunk\n",
    "split_chunk_size = 800\n",
    "chunk_overlap = 200\n",
    "text_splitter = CharacterTextSplitter(\n",
    "    separator=\"\",\n",
    "    chunk_size=split_chunk_size,\n",
    "    chunk_overlap=chunk_overlap,\n",
    "    length_function=len,\n",
    ")\n",
    "docs = text_splitter.create_documents(docs, metadata)\n",
    "print(f'number of chunks: {len(docs)}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_name = \"hkunlp/instructor-large\"\n",
    "embed_instruction = \"Represent the Hugging Face library documentation\"\n",
    "query_instruction = \"Query the most relevant piece of information from the Hugging Face documentation\"\n",
    "\n",
    "embedding_model = HuggingFaceInstructEmbeddings(\n",
    "    model_name=model_name,\n",
    "    embed_instruction=embed_instruction,\n",
    "    query_instruction=query_instruction,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class AverageInstructEmbeddings(HuggingFaceInstructEmbeddings):\n",
    "    max_length: int = None\n",
    "\n",
    "    def __init__(self, max_length: int = 512, **kwargs: Any):\n",
    "        super().__init__(**kwargs)\n",
    "        self.max_length = max_length\n",
    "        if self.max_length < 0:\n",
    "            print('max_length is not specified, using model default max_seq_length')\n",
    "\n",
    "    def embed_documents(self, texts: list[str]) -> list[list[float]]:\n",
    "        all_embeddings = []\n",
    "        for text in tqdm(texts, desc=\"Embedding documents\"):\n",
    "            if len(text) > self.max_length and self.max_length > -1:\n",
    "                n_chunks = math.ceil(len(text)/self.max_length)\n",
    "                chunks = [\n",
    "                    text[i*self.max_length:(i+1)*self.max_length]\n",
    "                    for i in range(n_chunks)\n",
    "                ]\n",
    "                instruction_pairs = [[self.embed_instruction, chunk] for chunk in chunks]\n",
    "                chunk_embeddings = self.client.encode(instruction_pairs)\n",
    "                avg_embedding = np.mean(chunk_embeddings, axis=0)\n",
    "                all_embeddings.append(avg_embedding.tolist())\n",
    "            else:\n",
    "                instruction_pairs = [[self.embed_instruction, text]]\n",
    "                embeddings = self.client.encode(instruction_pairs)\n",
    "                all_embeddings.append(embeddings[0].tolist())\n",
    "\n",
    "        return all_embeddings\n",
    "\n",
    "\n",
    "# max length fed to the model\n",
    "# if longer than CHUNK_SIZE in previous steps: then N chunks + averaging of embeddings\n",
    "max_length = 512\n",
    "embedding_model = AverageInstructEmbeddings(  \n",
    "    model_name=model_name,\n",
    "    embed_instruction=embed_instruction,\n",
    "    query_instruction=query_instruction,\n",
    "    max_length=max_length,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = embedding_model.embed_documents(texts=[d.page_content for d in docs[:10]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index = FAISS.from_documents(docs, embedding_model)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Index uploading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "todays_date = datetime.now().strftime('%d_%b_%Y')\n",
    "index_name = f'index-{model_name}-{split_chunk_size}-{chunk_overlap}-m{max_length}-{todays_date}'\n",
    "index_name = index_name.replace('/', '_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index.save_local(f'../indexes/{index_name}/')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index = FAISS.load_local(f'../indexes/{index_name}/', embedding_model)\n",
    "docs = index.similarity_search(query='how to create a pipeline object?', k=5)\n",
    "docs[0].page_content\n",
    "docs[0].metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for i, doc in enumerate(docs, start=1):\n",
    "    print(f\"\\n{'='*100}\\n\")\n",
    "    print(f\"Document {i} of {len(docs)}\")\n",
    "    print(\"Page Content:\")\n",
    "    print(f\"\\n{'-'*100}\\n\")\n",
    "    print(f'length of a chunk: {len(doc.page_content)}')\n",
    "    print(doc.page_content, '\\n')\n",
    "    print(doc.metadata)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "api = HfApi()\n",
    "api.create_repo(\n",
    "    repo_id=f'KonradSzafer/{index_name}',\n",
    "    repo_type='dataset',\n",
    "    private=False,\n",
    "    exist_ok=True\n",
    ")\n",
    "api.upload_folder(\n",
    "    folder_path=f'../indexes/{index_name}',\n",
    "    repo_id=f'KonradSzafer/{index_name}',\n",
    "    repo_type='dataset',\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Index inference"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index_repo_id = f'KonradSzafer/index-hkunlp_instructor-large-512-m512-11_Jan_2024'\n",
    "\n",
    "snapshot_download(\n",
    "    repo_id=index_repo_id,\n",
    "    allow_patterns=['*.faiss', '*.pkl'], \n",
    "    repo_type='dataset',\n",
    "    local_dir='../indexes/run/'\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index = FAISS.load_local('../indexes/run/', embedding_model)\n",
    "docs = index.similarity_search(query='how to create a pipeline object?', k=5)\n",
    "docs[0].metadata\n",
    "docs[0].page_content"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf_qa_bot",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}