hf-qa-demo / data /hugging_face_videos_dataset.py
KonradSzafer's picture
channel id added to config
bfdf8df
raw
history blame
5.03 kB
import os
import re
import time
import torch
import scrapetube
from pytube import YouTube
from faster_whisper import WhisperModel
from tqdm import tqdm
# Available models:
# tiny.en, tiny, base.en, base, small.en, small, medium.en, medium
# large-v1, large-v2, large-v3, large
MODEL_NAME = "large-v3"
AUDIO_SAVE_PATH = 'datasets/huggingface_audio/'
TRANSCRIPTS_SAVE_PATH = 'datasets/huggingface_audio_transcribed/'
if torch.cuda.is_available():
# requires: conda install -c anaconda cudnn
print(f"Using {MODEL_NAME} on GPU and float16")
model = WhisperModel(MODEL_NAME, device="cuda", compute_type="float16", device_index=[5])
else:
print(f"Using {MODEL_NAME} on CPU and int8")
model = WhisperModel(MODEL_NAME, device="cpu", compute_type="int8")
def replace_unallowed_chars(filename: str) -> str:
unallowed_chars = [' ', '/', '\\', ':', '*', '?', '"', '<', '>', '|']
for char in unallowed_chars:
filename = filename.replace(char, '_')
return filename
def get_videos_urls(channel_url: str) -> list[str]:
videos = scrapetube.get_channel(channel_url=channel_url)
return [
f"https://www.youtube.com/watch?v={video['videoId']}"
for video in videos
]
def get_audio_from_video(video_url: str, save_path: str) -> tuple[str, int, str, int]:
yt = YouTube(video_url)
if check_if_file_exists(yt.title, save_path):
print(f'Audio already exists for: {yt.title}')
return (video_url, yt.title.replace(" ", "_")+".mp3", yt.title, yt.length)
else:
print(f'Downloading audio for: {yt.title}')
video = yt.streams.filter(only_audio=True).first()
out_file = video.download(output_path=save_path)
base, ext = os.path.splitext(out_file)
new_filename = save_path + replace_unallowed_chars(yt.title) + '.mp3'
print(f'Saving audio to: {new_filename}')
os.rename(out_file, new_filename)
print(f'Video length: {yt.length} seconds')
return (video_url, new_filename, yt.title, yt.length)
def check_if_file_exists(filename: str, save_path: str) -> bool:
title = filename.replace(' ', '_')
return any([
title in filename_
for filename_ in os.listdir(save_path)
])
def transcript_from_audio(audio_path: str) -> dict[str, list[str]]:
segments, info = model.transcribe(audio_path, beam_size=10)
return list(segments)
def process_text(text: str) -> str:
text = text.strip()
text = re.sub('\s+', ' ', text)
return text
def merge_transcripts_segements(
segments: list[str],
file_title: str,
num_segments_to_merge: int = 5,
) -> dict[str, list[str]]:
merged_segments = {}
temp_text = ''
start_time = None
end_time = None
for i, segment in enumerate(segments):
if i % num_segments_to_merge == 0:
start_time = segment.start
end_time = segment.end
temp_text += segment.text + ' '
if (i + 1) % num_segments_to_merge == 0 or i == len(segments) - 1:
key = f'{start_time:.2f}_{end_time:.2f}'
merged_segments[key] = process_text(temp_text)
temp_text = ''
return merged_segments
def main():
if not os.path.exists(AUDIO_SAVE_PATH):
os.makedirs(AUDIO_SAVE_PATH)
if not os.path.exists(TRANSCRIPTS_SAVE_PATH):
os.makedirs(TRANSCRIPTS_SAVE_PATH)
print('Getting videos urls')
videos_urls = get_videos_urls('https://www.youtube.com/@HuggingFace')
print('Downloading audio files')
audio_data = []
for video_url in tqdm(videos_urls):
try:
audio_data.append(
get_audio_from_video(video_url, save_path=AUDIO_SAVE_PATH)
)
except Exception as e:
print(f'Error downloading video: {video_url}')
print(e)
print('Transcribing audio files')
for video_url, filename, title, audio_length in tqdm(audio_data):
if check_if_file_exists(title, TRANSCRIPTS_SAVE_PATH):
print(f'Transcript already exists for: {title}')
continue
try:
print(f'Transcribing: {title}')
start_time = time.time()
segments = transcript_from_audio(filename)
print(f'Transcription took: {time.time() - start_time:.1f} seconds')
merged_segments = merge_transcripts_segements(
segments,
title,
num_segments_to_merge=10
)
# save transcripts to separate files
title = replace_unallowed_chars(title)
for segment, text in merged_segments.items():
with open(f'{TRANSCRIPTS_SAVE_PATH}{title}_{segment}.txt', 'w') as f:
video_url_with_time = f'{video_url}&t={float(segment.split("_")[0]):.0f}'
f.write(f'source: {video_url_with_time}\n\n' + text)
except Exception as e:
print(f'Error transcribing: {title}')
print(e)
if __name__ == '__main__':
main()