hf-qa-demo / benchmarker.py
KonradSzafer's picture
initial commit
c69cba4
raw
history blame
1.8 kB
import gradio as gr
from dotenv import load_dotenv
from api.config import Config
from api.logger import logger
from api.question_answering import QAModel
import time
load_dotenv(dotenv_path='config/api/.env')
config = Config()
model = QAModel(
llm_model_id=config.question_answering_model_id,
embedding_model_id=config.embedding_model_id,
index_repo_id=config.index_repo_id,
prompt_template=config.prompt_template,
use_docs_for_context=config.use_docs_for_context,
add_sources_to_response=config.add_sources_to_response,
use_messages_for_context=config.use_messages_in_context,
debug=config.debug
)
QUESTIONS_FILENAME = 'data/benchmark/questions.json'
ANSWERS_FILENAME = 'data/benchmark/answers.json'
def main():
benchmark_name = \
f'model: {config.question_answering_model_id}' \
f'index: {config.index_repo_id}'
wandb.init(
project='HF-Docs-QA',
name=f'model: {config.question_answering_model_id}',
mode='run', # run/disabled
config=config.asdict()
)
# log config to wandb
with open(QUESTIONS_FILENAME, 'r') as f: # json
questions = f.readlines()
with open(ANSWERS_FILENAME, 'w') as f:
for q in questions:
question = q['question']
messages_contex = q['messages_context']
t_start = time.perf_counter()
response = model.get_response(
question=question,
messages_context=messages_context
)
t_end = time.perf_counter()
# write to json
{
"answer": response.get_answer(),
"sources": response.get_sources_as_text(),
'time': t_end - t_start
}
if __name__ == '__main__':
main()