import os
import json
import requests
import subprocess
from typing import Mapping, Optional, Any
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import snapshot_download
from urllib.parse import quote
from langchain import PromptTemplate, HuggingFaceHub, LLMChain
from langchain.llms import HuggingFacePipeline
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceHubEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from sentence_transformers import CrossEncoder
from qa_engine import logger
from qa_engine.response import Response
from qa_engine.mocks import MockLocalBinaryModel
class LocalBinaryModel(LLM):
model_id: str = None
llm: None = None
def __init__(self, model_id: str = None):
super().__init__()
# pip install llama_cpp_python==0.1.39
from llama_cpp import Llama
model_path = f'qa_engine/{model_id}'
if not os.path.exists(model_path):
raise ValueError(f'{model_path} does not exist')
self.model_id = model_id
self.llm = Llama(model_path=model_path, n_ctx=4096)
def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str:
output = self.llm(
prompt,
max_tokens=1024,
stop=['Q:'],
echo=False
)
return output['choices'][0]['text']
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {'name_of_model': self.model_id}
@property
def _llm_type(self) -> str:
return self.model_id
class TransformersPipelineModel(LLM):
model_id: str = None
pipeline: str = None
def __init__(self, model_id: str = None):
super().__init__()
self.model_id = model_id
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=False,
device_map='auto',
resume_download=True,
)
self.pipeline = transformers.pipeline(
'text-generation',
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map='auto',
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
min_new_tokens=64,
max_new_tokens=800,
temperature=0.1,
do_sample=True,
)
def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str:
output_text = self.pipeline(prompt)[0]['generated_text']
output_text = output_text.replace(prompt+'\n', '')
return output_text
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {'name_of_model': self.model_id}
@property
def _llm_type(self) -> str:
return self.model_id
class APIServedModel(LLM):
model_url: str = None
debug: bool = None
def __init__(self, model_url: str = None, debug: bool = None):
super().__init__()
if model_url[-1] == '/':
raise ValueError('URL should not end with a slash - "/"')
self.model_url = model_url
self.debug = debug
def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str:
prompt_encoded = quote(prompt, safe='')
url = f'{self.model_url}/?prompt={prompt_encoded}'
if self.debug:
logger.info(f'URL: {url}')
try:
response = requests.get(url, timeout=1200, verify=False)
response.raise_for_status()
return json.loads(response.content)['output_text']
except Exception as err:
logger.error(f'Error: {err}')
return f'Error: {err}'
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {'name_of_model': f'model url: {self.model_url}'}
@property
def _llm_type(self) -> str:
return 'api_model'
class QAEngine():
"""
QAEngine class, used for generating answers to questions.
Args:
llm_model_id (str): The ID of the LLM model to be used.
embedding_model_id (str): The ID of the embedding model to be used.
index_repo_id (str): The ID of the index repository to be used.
run_locally (bool, optional): Whether to run the models locally or on the Hugging Face hub. Defaults to True.
use_docs_for_context (bool, optional): Whether to use relevant documents as context for generating answers.
Defaults to True.
use_messages_for_context (bool, optional): Whether to use previous messages as context for generating answers.
Defaults to True.
debug (bool, optional): Whether to log debug information. Defaults to False.
Attributes:
use_docs_for_context (bool): Whether to use relevant documents as context for generating answers.
use_messages_for_context (bool): Whether to use previous messages as context for generating answers.
debug (bool): Whether to log debug information.
llm_model (Union[LocalBinaryModel, HuggingFacePipeline, HuggingFaceHub]): The LLM model to be used.
embedding_model (Union[HuggingFaceInstructEmbeddings, HuggingFaceHubEmbeddings]): The embedding model to be used.
prompt_template (PromptTemplate): The prompt template to be used.
llm_chain (LLMChain): The LLM chain to be used.
knowledge_index (FAISS): The FAISS index to be used.
"""
def __init__(
self,
llm_model_id: str,
embedding_model_id: str,
index_repo_id: str,
prompt_template: str,
use_docs_for_context: bool = True,
num_relevant_docs: int = 3,
add_sources_to_response: bool = True,
use_messages_for_context: bool = True,
first_stage_docs: int = 50,
debug: bool = False
):
super().__init__()
self.prompt_template = prompt_template
self.use_docs_for_context = use_docs_for_context
self.num_relevant_docs = num_relevant_docs
self.add_sources_to_response = add_sources_to_response
self.use_messages_for_context = use_messages_for_context
self.first_stage_docs = first_stage_docs
self.debug = debug
prompt = PromptTemplate(
template=prompt_template,
input_variables=['question', 'context']
)
self.llm_model = QAEngine._get_model(llm_model_id)
self.llm_chain = LLMChain(prompt=prompt, llm=self.llm_model)
if self.use_docs_for_context:
logger.info(f'Downloading {index_repo_id}')
snapshot_download(
repo_id=index_repo_id,
allow_patterns=['*.faiss', '*.pkl'],
repo_type='dataset',
local_dir='indexes/run/'
)
logger.info('Loading embedding model')
embed_instruction = 'Represent the Hugging Face library documentation'
query_instruction = 'Query the most relevant piece of information from the Hugging Face documentation'
embedding_model = HuggingFaceInstructEmbeddings(
model_name=embedding_model_id,
embed_instruction=embed_instruction,
query_instruction=query_instruction
)
logger.info('Loading index')
self.knowledge_index = FAISS.load_local('./indexes/run/', embedding_model)
self.reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
@staticmethod
def _get_model(llm_model_id: str):
if 'local_models/' in llm_model_id:
logger.info('using local binary model')
return LocalBinaryModel(
model_id=llm_model_id
)
elif 'api_models/' in llm_model_id:
logger.info('using api served model')
return APIServedModel(
model_url=llm_model_id.replace('api_models/', ''),
debug=self.debug
)
elif llm_model_id == 'mock':
logger.info('using mock model')
return MockLocalBinaryModel()
else:
logger.info('using transformers pipeline model')
return TransformersPipelineModel(
model_id=llm_model_id
)
@staticmethod
def _preprocess_question(question: str) -> str:
if '?' not in question:
question += '?'
return question
@staticmethod
def _postprocess_answer(answer: str) -> str:
'''
Preprocess the answer by removing unnecessary sequences and stop sequences.
'''
SEQUENCES_TO_REMOVE = [
'Factually: ', 'Answer: ', '<>', '<>', '[INST]', '[/INST]'
]
SEQUENCES_TO_STOP = [
'User:', 'You:', 'Question:'
]
for seq in SEQUENCES_TO_REMOVE:
answer = answer.replace(seq, '')
for seq in SEQUENCES_TO_STOP:
if seq in answer:
answer = answer[:answer.index(seq)]
answer = answer.strip()
return answer
def get_response(self, question: str, messages_context: str = '') -> Response:
"""
Generate an answer to the specified question.
Args:
question (str): The question to be answered.
messages_context (str, optional): The context to be used for generating the answer. Defaults to ''.
Returns:
response (Response): The Response object containing the generated answer and the sources of information
used to generate the response.
"""
response = Response()
context = ''
relevant_docs = ''
if self.use_messages_for_context and messages_context:
messages_context = f'\nPrevious questions and answers:\n{messages_context}'
context += messages_context
if self.use_docs_for_context:
logger.info('Retriving documents')
# messages context is used for better retrival
retrival_query = messages_context + question
relevant_docs = self.knowledge_index.similarity_search(
query=retrival_query,
k=self.first_stage_docs
)
cross_encoding_predictions = self.reranker.predict(
[(retrival_query, doc.page_content) for doc in relevant_docs]
)
relevant_docs = [
doc for _, doc in sorted(
zip(cross_encoding_predictions, relevant_docs),
reverse=True, key = lambda x: x[0]
)
]
relevant_docs = relevant_docs[:self.num_relevant_docs]
context += '\nEXTRACTED DOCUMENTS:\n'
for i, (doc) in enumerate(relevant_docs):
context += f'\n\n\n {doc.page_content} \n'
metadata = [doc.metadata for doc in relevant_docs]
response.set_sources(sources=[str(m['source']) for m in metadata])
logger.info('Running LLM chain')
question_processed = QAEngine._preprocess_question(question)
answer = self.llm_chain.run(question=question_processed, context=context)
answer_postprocessed = QAEngine._postprocess_answer(answer)
response.set_answer(answer_postprocessed)
logger.info('Received answer')
if self.debug:
logger.info('\n' + '=' * 100)
sep = '\n' + '-' * 100
logger.info(f'question len: {len(question)} {sep}')
logger.info(f'question: {question} {sep}')
logger.info(f'question processed: {question} {sep}')
logger.info(f'answer len: {len(response.get_answer())} {sep}')
logger.info(f'answer original: {answer} {sep}')
logger.info(f'answer postprocessed: {response.get_answer()} {sep}')
logger.info(f'{response.get_sources_as_text()} {sep}')
logger.info(f'messages_contex: {messages_context} {sep}')
logger.info(f'relevant_docs: {relevant_docs} {sep}')
logger.info(f'context len: {len(context)} {sep}')
logger.info(f'context: {context} {sep}')
return response