Spaces:
Runtime error
Runtime error
File size: 25,897 Bytes
7bffaaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
import math
import os
from os.path import exists
from os.path import join as pjoin
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import transformers
from datasets import load_dataset
from huggingface_hub import HfApi
from tqdm import tqdm
# from .dataset_utils import prepare_clustering_dataset
pd.options.display.max_colwidth = 256
_CACHE_DIR = "cache_dir"
_DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
_MAX_MERGE = 20000000 # to run on 64GB RAM laptop
def sentence_mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
] # First element of model_output contains all token embeddings
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
# get nearest neighbors of a centroid by dot product
def get_examplars(example_ids, centroid, embeddings, dset, n_examplars):
example_embeds = embeddings[example_ids]
example_scores = torch.mv(example_embeds, centroid)
s_scores, s_ids = example_scores.sort(dim=-1, descending=True)
examplars = [
(example_ids[i.item()], s.item())
for i, s in zip(s_ids[:n_examplars], s_scores[:n_examplars])
]
res = []
for eid, score in examplars:
dct = dict(dset[eid])
dct["score"] = score
res += [dct]
return res
# order node children so that the large ones are in the middle
# makes visualization more balanced
def pretty_order(nodes, node_ids):
sorted_ids = sorted(node_ids, key=lambda nid: nodes[nid]["weight"])
sorted_a = [nid for i, nid in enumerate(sorted_ids) if i % 2 == 0]
sorted_b = [nid for i, nid in enumerate(sorted_ids) if i % 2 == 1]
sorted_b.reverse()
return sorted_a + sorted_b
def make_tree_plot(node_list, root_id, max_depth=-1):
# make plot nodes
plot_nodes = [{} for _ in node_list]
root = {
"parent_id": -1,
"node_id": root_id,
"label": node_list[root_id]["hover_text"],
"weight": node_list[root_id]["weight"],
"num_leaves": 0,
"children_ids": node_list[root_id]["children_ids"],
"Xmin": 0,
"Y": 0,
}
plot_nodes[root_id] = root
root_depth = node_list[root_id]["depth"]
def rec_make_coordinates(node):
total_weight = 0
recurse = (max_depth == -1) or (
node_list[node["node_id"]]["depth"] - root_depth < max_depth - 1
)
for cid in node["children_ids"]:
plot_nodes[cid] = {
"parent_id": node["node_id"],
"node_id": cid,
"label": node_list[cid]["hover_text"],
"weight": node_list[cid]["weight"],
"children_ids": node_list[cid]["children_ids"] if recurse else [],
"Xmin": node["Xmin"] + total_weight,
"Y": node["Y"] - 1,
}
plot_nodes[cid]["num_leaves"] = 1 if len(plot_nodes[cid]["children_ids"]) == 0 else 0
rec_make_coordinates(plot_nodes[cid])
total_weight += plot_nodes[cid]["num_leaves"]
node["num_leaves"] += plot_nodes[cid]["num_leaves"]
node["Xmax"] = node["Xmin"] + node["num_leaves"]
node["X"] = node["Xmin"] + (node["num_leaves"] / 2)
rec_make_coordinates(root)
subtree_nodes = [node for node in plot_nodes if len(node) > 0]
nid_map = dict([(node["node_id"], nid) for nid, node in enumerate(subtree_nodes)])
labels = [node["label"] for node in subtree_nodes]
E = [] # list of edges
Xn = []
Yn = []
Xe = []
Ye = []
for nid, node in enumerate(subtree_nodes):
Xn += [node["X"]]
Yn += [node["Y"]]
for cid in node["children_ids"]:
child = plot_nodes[cid]
E += [(nid, nid_map[child["node_id"]])]
Xe += [node["X"], child["X"], None]
Ye += [node["Y"], child["Y"], None]
# make figure
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=Xe,
y=Ye,
mode="lines",
name="",
line=dict(color="rgb(210,210,210)", width=1),
hoverinfo="none",
)
)
fig.add_trace(
go.Scatter(
x=Xn,
y=Yn,
mode="markers",
name="nodes",
marker=dict(
symbol="circle-dot",
size=18,
color="#6175c1",
line=dict(color="rgb(50,50,50)", width=1)
# '#DB4551',
),
text=labels,
hoverinfo="text",
opacity=0.8,
)
)
fig.layout.showlegend = False
return fig
class ClusteringBuilder:
def __init__(
self,
dataset_name,
config_name,
split_name,
input_field_path,
label_name,
num_rows,
model_name=_DEFAULT_MODEL,
):
"""Item embeddings and clustering"""
self.dataset_name = dataset_name
self.config_name = config_name
self.split_name = split_name
self.input_field_path = input_field_path
self.label_name = label_name
self.num_rows = num_rows
self.cache_path_list = [
_CACHE_DIR,
dataset_name.replace("/", "---"),
f"{'default' if config_name is None else config_name}",
f"{'train' if split_name is None else split_name}",
f"field-{'->'.join(input_field_path)}-label-{label_name}",
f"{num_rows}_rows",
model_name.replace("/", "---"),
]
self.cache_path = pjoin(*self.cache_path_list)
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.model_name = model_name
# prepare embeddings for the dataset
def set_model(self):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
self.model = transformers.AutoModel.from_pretrained(self.model_name).to(
self.device
)
def set_features_dataset(self, use_streaming, use_auth_token, use_dataset):
dset, dset_path = prepare_clustering_dataset(
dataset_name=self.dataset_name,
input_field_path=self.input_field_path,
label_name=self.label_name,
config_name=self.config_name,
split_name=self.split_name,
num_rows=self.num_rows,
use_streaming=use_streaming,
use_auth_token=use_auth_token,
use_dataset=use_dataset,
)
self.features_dset = dset
def compute_feature_embeddings(self, sentences):
batch = self.tokenizer(
sentences, padding=True, truncation=True, return_tensors="pt"
)
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.no_grad():
model_output = self.model(**batch)
sentence_embeds = sentence_mean_pooling(
model_output, batch["attention_mask"]
)
sentence_embeds /= sentence_embeds.norm(dim=-1, keepdim=True)
return sentence_embeds
def set_embeddings_dataset(self):
def batch_embed(examples):
return {
"embedding": [
embed.tolist()
for embed in self.compute_feature_embeddings(examples["field"])
]
}
if not exists(self.cache_path):
os.mkdir(self.cache_path)
self.embeddings_dset = self.features_dset.map(
batch_embed,
batched=True,
batch_size=32,
cache_file_name=pjoin(self.cache_path, "embeddings_dset"),
)
def prepare_embeddings(
self,
use_streaming=True,
use_auth_token=None,
use_dataset=None,
):
self.set_model()
self.set_features_dataset(use_streaming, use_auth_token, use_dataset)
self.set_embeddings_dataset()
# make cluster tree
def prepare_merges(self, batch_size, low_thres):
self.embeddings = torch.Tensor(self.embeddings_dset["embedding"])
all_indices = torch.LongTensor(torch.Size([0, 2]))
all_scores = torch.Tensor(torch.Size([0]))
n_batches = math.ceil(self.embeddings_dset.num_rows / batch_size)
for a in range(n_batches):
for b in tqdm(range(a, n_batches)):
cos_scores = torch.mm(
self.embeddings[a * batch_size : (a + 1) * batch_size],
self.embeddings[b * batch_size : (b + 1) * batch_size].t(),
)
if a == b:
cos_scores = cos_scores.triu(diagonal=1)
merge_indices = torch.nonzero(cos_scores > low_thres)
merge_indices[:, 0] += a * batch_size
merge_indices[:, 1] += b * batch_size
merge_scores = cos_scores[cos_scores > low_thres]
all_indices = torch.cat([all_indices, merge_indices], dim=0)
all_scores = torch.cat([all_scores, merge_scores], dim=0)
self.sorted_scores, sorted_score_ids = all_scores.sort(dim=0, descending=True)
self.sorted_scores = self.sorted_scores[:_MAX_MERGE]
sorted_score_ids = sorted_score_ids[:_MAX_MERGE]
self.sorted_indices = all_indices[sorted_score_ids]
def make_starting_nodes(self, identical_threshold):
identical_indices = self.sorted_indices[
self.sorted_scores >= identical_threshold
]
identical_inter = identical_indices[
identical_indices[:, 1].sort(stable=True).indices
]
identical_sorted = identical_inter[
identical_inter[:, 0].sort(stable=True).indices
]
self.parents = {}
for a_pre, b_pre in identical_sorted:
a = a_pre.item()
b = b_pre.item()
while self.parents.get(a, -1) != -1:
a = self.parents[a]
self.parents[b] = a
self.duplicates = {}
for a, b in self.parents.items():
self.duplicates[b] = self.duplicates.get(b, []) + [a]
self.nodes = {}
for node_id in range(self.features_dset.num_rows):
if node_id in self.parents:
continue
else:
self.nodes[node_id] = {
"node_id": node_id,
"parent_id": -1,
"children": [],
"children_ids": [],
"example_ids": [node_id],
"weight": 1,
"merge_threshold": 0.98,
"depth": 0,
}
def make_merge_nodes(self, identical_threshold, thres_step):
new_node_id = self.features_dset.num_rows
current_thres = identical_threshold
depth = 1
merge_ids = self.sorted_indices[self.sorted_scores < identical_threshold]
merge_scores = self.sorted_scores[self.sorted_scores < identical_threshold]
for (node_id_a, node_id_b), merge_score in tqdm(
zip(merge_ids, merge_scores), total=len(merge_ids)
):
if merge_score.item() < current_thres:
current_thres -= thres_step
merge_a = node_id_a.item()
while self.parents.get(merge_a, -1) != -1:
merge_a = self.parents[merge_a]
self.parents[node_id_a] = merge_a
merge_b = node_id_b.item()
while self.parents.get(merge_b, -1) != -1:
merge_b = self.parents[merge_b]
self.parents[node_id_b] = merge_b
if merge_a == merge_b:
continue
else:
merge_b, merge_a = sorted([merge_a, merge_b])
node_a = self.nodes[merge_a]
node_b = self.nodes[merge_b]
if (node_a["depth"]) > 0 and min(
node_a["merge_threshold"], node_b["merge_threshold"]
) == current_thres:
node_a["depth"] = max(node_a["depth"], node_b["depth"])
node_a["weight"] += node_b["weight"]
node_a["children_ids"] += (
node_b["children_ids"]
if node_b["depth"] > 0
else [node_b["node_id"]]
)
for cid in node_b["children_ids"]:
self.nodes[cid]["parent_id"] = node_a["node_id"]
self.parents[cid] = node_a["node_id"]
node_b["parent_id"] = node_a["node_id"]
self.parents[node_b["node_id"]] = node_a["node_id"]
else:
new_nid = new_node_id
new_node_id += 1
new_node = {
"node_id": new_nid,
"parent_id": -1,
"children_ids": [node_a["node_id"], node_b["node_id"]],
"example_ids": [],
"weight": node_a["weight"] + node_b["weight"],
"merge_threshold": current_thres,
"depth": max(node_a["depth"], node_b["depth"]) + 1,
}
depth = max(depth, new_node["depth"])
node_a["parent_id"] = new_nid
node_b["parent_id"] = new_nid
self.parents[node_a["node_id"]] = new_nid
self.parents[node_b["node_id"]] = new_nid
self.parents[node_id_a] = new_nid
self.parents[node_id_b] = new_nid
self.nodes[new_nid] = new_node
return new_node_id
def collapse_nodes(self, node, min_weight):
children = [
self.collapse_nodes(self.nodes[cid], min_weight)
for cid in node["children_ids"]
if self.nodes[cid]["weight"] >= min_weight
]
extras = [
lid
for cid in node["children_ids"]
if self.nodes[cid]["weight"] < min_weight
for lid in self.collapse_nodes(self.nodes[cid], min_weight)["example_ids"]
] + node["example_ids"]
extras_embed = (
torch.cat(
[self.embeddings[eid][None, :] for eid in extras],
dim=0,
).sum(dim=0)
if len(extras) > 0
else torch.zeros(self.embeddings.shape[-1])
)
if len(children) == 0:
node["extras"] = extras
node["children_ids"] = []
node["example_ids"] = extras
node["embedding_sum"] = extras_embed
elif len(children) == 1:
node["extras"] = extras + children[0]["extras"]
node["children_ids"] = children[0]["children_ids"]
node["example_ids"] = extras + children[0]["example_ids"]
node["embedding_sum"] = extras_embed + children[0]["embedding_sum"]
else:
node["extras"] = extras
node["children_ids"] = [child["node_id"] for child in children]
node["example_ids"] = extras + [
eid for child in children for eid in child["example_ids"]
]
node["embedding_sum"] = (
extras_embed
+ torch.cat(
[child["embedding_sum"][None, :] for child in children],
dim=0,
).sum(dim=0)
)
assert (
len(node["example_ids"]) == node["weight"]
), f"stuck at {node['node_id']} - {len(node['example_ids'])} - {node['weight']}"
return node
def finalize_node(self, node, parent_id, n_examplars, with_labels):
new_node_id = len(self.tree_node_list)
new_node = {
"node_id": new_node_id,
"parent_id": parent_id,
"depth": 0
if parent_id == -1
else self.tree_node_list[parent_id]["depth"] + 1,
"merged_at": node["merge_threshold"],
"weight": node["weight"],
"is_extra": False,
}
self.tree_node_list += [new_node]
centroid = node["embedding_sum"] / node["embedding_sum"].norm()
new_node["centroid"] = centroid.tolist()
new_node["examplars"] = get_examplars(
node["example_ids"],
centroid,
self.embeddings,
self.features_dset,
n_examplars,
)
label_counts = {}
if with_labels:
for eid in node["example_ids"]:
label = self.features_dset[eid]["label"]
label_counts[label] = label_counts.get(label, 0) + 1
new_node["label_counts"] = sorted(
label_counts.items(), key=lambda x: x[1], reverse=True
)
if len(node["children_ids"]) == 0:
new_node["children_ids"] = []
else:
children = [
self.nodes[cid]
for cid in pretty_order(self.nodes, node["children_ids"])
]
children_ids = [
self.finalize_node(child, new_node_id, n_examplars, with_labels)
for child in children
]
new_node["children_ids"] = children_ids
if len(node["extras"]) > 0:
extra_node = {
"node_id": len(self.tree_node_list),
"parent_id": new_node_id,
"depth": new_node["depth"] + 1,
"merged_at": node["merge_threshold"],
"weight": len(node["extras"]),
"is_extra": True,
"centroid": new_node["centroid"],
"examplars": get_examplars(
node["extras"],
centroid,
self.embeddings,
self.features_dset,
n_examplars,
),
}
self.tree_node_list += [extra_node]
label_counts = {}
if with_labels:
for eid in node["extras"]:
label = self.features_dset[eid]["label"]
label_counts[label] = label_counts.get(label, 0) + 1
extra_node["label_counts"] = sorted(
label_counts.items(), key=lambda x: x[1], reverse=True
)
extra_node["children_ids"] = []
new_node["children_ids"] += [extra_node["node_id"]]
return new_node_id
def make_hover_text(self, num_examples=5, text_width=64, with_labels=False):
for nid, node in enumerate(self.tree_node_list):
line_list = [
f"Node {nid:3d} - {node['weight']:6d} items - Linking threshold: {node['merged_at']:.2f}"
]
for examplar in node["examplars"][:num_examples]:
line_list += [
f"{examplar['ids']:6d}:{examplar['score']:.2f} - {examplar['field'][:text_width]}"
+ (f" - {examplar['label']}" if with_labels else "")
]
if with_labels:
line_list += ["Label distribution"]
for label, count in node["label_counts"]:
line_list += [f" - label: {label} - {count} items"]
node["hover_text"] = "<br>".join(line_list)
def build_tree(
self,
batch_size=10000,
low_thres=0.5,
identical_threshold=0.95,
thres_step=0.05,
min_weight=10,
n_examplars=25,
hover_examples=5,
hover_text_width=64,
):
self.prepare_merges(batch_size, low_thres)
self.make_starting_nodes(identical_threshold)
# make a root to join all trees
root_node_id = self.make_merge_nodes(identical_threshold, thres_step)
top_nodes = [node for node in self.nodes.values() if node["parent_id"] == -1]
root_node = {
"node_id": root_node_id,
"parent_id": -1,
"children_ids": [node["node_id"] for node in top_nodes],
"example_ids": [],
"weight": sum([node["weight"] for node in top_nodes]),
"merge_threshold": -1.0,
"depth": 1 + max([node["depth"] for node in top_nodes]),
}
for node in top_nodes:
node["parent_id"] = root_node_id
self.nodes[root_node_id] = root_node
_ = self.collapse_nodes(root_node, min_weight)
self.tree_node_list = []
self.finalize_node(
root_node,
-1,
n_examplars,
with_labels=(self.label_name is not None),
)
self.make_hover_text(
num_examples=hover_examples,
text_width=hover_text_width,
with_labels=(self.label_name is not None),
)
def push_to_hub(self, use_auth_token=None, file_name=None):
path_list = self.cache_path_list
name = "tree" if file_name is None else file_name
tree_file = pjoin(pjoin(*path_list), f"{name}.jsonl.gz")
fout = gzip.open(tree_file, "w")
for node in tqdm(self.tree_node_list):
_ = fout.write((json.dumps(node) + "\n").encode("utf-8"))
fout.close()
api = HfApi()
file_loc = api.upload_file(
path_or_fileobj=tree_file,
path_in_repo=pjoin(pjoin(*path_list[1:]), f"{name}.jsonl.gz"),
repo_id="yjernite/datasets_clusters",
token=use_auth_token,
repo_type="dataset",
)
return file_loc
class Clustering:
def __init__(
self,
dataset_name,
config_name,
split_name,
input_field_path,
label_name,
num_rows,
n_examplars=10,
model_name=_DEFAULT_MODEL,
file_name=None,
max_depth_subtree=3,
):
self.dataset_name = dataset_name
self.config_name = config_name
self.split_name = split_name
self.input_field_path = input_field_path
self.label_name = label_name
self.num_rows = num_rows
self.model_name = model_name
self.n_examplars = n_examplars
self.file_name = "tree" if file_name is None else file_name
self.repo_path_list = [
dataset_name.replace("/", "---"),
f"{'default' if config_name is None else config_name}",
f"{'train' if split_name is None else split_name}",
f"field-{'->'.join(input_field_path)}-label-{label_name}",
f"{num_rows}_rows",
model_name.replace("/", "---"),
f"{self.file_name}.jsonl.gz",
]
self.repo_path = pjoin(*self.repo_path_list)
self.node_list = load_dataset(
"yjernite/datasets_clusters", data_files=[self.repo_path]
)["train"]
self.node_reps = [{} for node in self.node_list]
self.max_depth_subtree = max_depth_subtree
def set_full_tree(self):
self.node_reps[0]["tree"] = self.node_reps[0].get(
"tree",
make_tree_plot(
self.node_list,
0,
),
)
def get_full_tree(self):
self.set_full_tree()
return self.node_reps[0]["tree"]
def set_node_subtree(self, node_id):
self.node_reps[node_id]["subtree"] = self.node_reps[node_id].get(
"subtree",
make_tree_plot(
self.node_list,
node_id,
self.max_depth_subtree,
),
)
def get_node_subtree(self, node_id):
self.set_node_subtree(node_id)
return self.node_reps[node_id]["subtree"]
def set_node_examplars(self, node_id):
self.node_reps[node_id]["examplars"] = self.node_reps[node_id].get(
"examplars",
pd.DataFrame(
[
{
"id": exple["ids"],
"score": exple["score"],
"field": exple["field"],
"label": exple.get("label", "N/A"),
}
for exple in self.node_list[node_id]["examplars"]
][: self.n_examplars]
),
)
def get_node_examplars(self, node_id):
self.set_node_examplars(node_id)
return self.node_reps[node_id]["examplars"]
def set_node_label_chart(self, node_id):
self.node_reps[node_id]["label_chart"] = self.node_reps[node_id].get(
"label_chart",
px.pie(
values=[ct for lab, ct in self.node_list[node_id]["label_counts"]],
names=[
f"Label {lab}"
for lab, ct in self.node_list[node_id]["label_counts"]
],
color_discrete_sequence=px.colors.sequential.Rainbow,
width=400,
height=400,
),
)
def get_node_label_chart(self, node_id):
self.set_node_label_chart(node_id)
return self.node_reps[node_id]["label_chart"]
|