File size: 7,207 Bytes
050a9de
 
 
65cfe9e
 
 
 
 
 
 
050a9de
65cfe9e
 
 
 
 
 
 
050a9de
 
23c644c
a5c4771
3ec873b
65cfe9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050a9de
 
 
 
 
65cfe9e
050a9de
 
906a076
 
050a9de
65cfe9e
050a9de
a5c4771
 
 
 
65cfe9e
a5c4771
050a9de
 
 
 
 
65cfe9e
a5c4771
 
 
 
050a9de
 
65cfe9e
 
 
a5c4771
65cfe9e
 
 
a5c4771
 
050a9de
65cfe9e
 
050a9de
 
 
 
 
65cfe9e
050a9de
 
 
 
 
 
 
 
65cfe9e
 
050a9de
 
 
65cfe9e
906a076
65cfe9e
906a076
65cfe9e
 
 
 
050a9de
 
65cfe9e
050a9de
 
 
65cfe9e
050a9de
65cfe9e
 
050a9de
65cfe9e
 
 
050a9de
65cfe9e
 
 
050a9de
 
 
 
 
 
 
65cfe9e
050a9de
65cfe9e
050a9de
 
65cfe9e
050a9de
 
 
65cfe9e
 
 
 
 
 
050a9de
 
 
 
3ec873b
050a9de
 
 
 
 
 
 
 
65cfe9e
050a9de
 
 
 
65cfe9e
 
 
050a9de
65cfe9e
 
 
 
050a9de
 
 
65cfe9e
 
 
 
 
 
 
 
 
050a9de
 
 
65cfe9e
 
 
 
 
 
 
 
 
 
3ec873b
a5c4771
050a9de
 
 
65cfe9e
 
050a9de
 
65cfe9e
 
050a9de
3ec873b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import pandas as pd
import json
from constants import (
    BANNER,
    INTRODUCTION_TEXT,
    CITATION_TEXT,
    METRICS_TAB_TEXT,
    DIR_OUTPUT_REQUESTS,
)
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import (
    AutoEvalColumn,
    fields,
    make_clickable_model,
    styled_error,
    styled_message,
)
from datetime import datetime, timezone

LAST_UPDATED = "September, 7th 2023"
GPU_MODEL = "NVIDIA Tesla M60"

column_names = {
    "model": "model",
    "AP-IoU=0.50:0.95-area=all-maxDets=100": "AP",
    "AP-IoU=0.50-area=all-maxDets=100": "AP@.50",
    "AP-IoU=0.75-area=all-maxDets=100": "AP@.75",
    "AP-IoU=0.50:0.95-area=small-maxDets=100": "AP-S",
    "AP-IoU=0.50:0.95-area=medium-maxDets=100": "AP-M",
    "AP-IoU=0.50:0.95-area=large-maxDets=100": "AP-L",
    "AR-IoU=0.50:0.95-area=all-maxDets=1": "AR1",
    "AR-IoU=0.50:0.95-area=all-maxDets=10": "AR10",
    "AR-IoU=0.50:0.95-area=all-maxDets=100": "AR100",
    "AR-IoU=0.50:0.95-area=small-maxDets=100": "AR-S",
    "AR-IoU=0.50:0.95-area=medium-maxDets=100": "AR-M",
    "AR-IoU=0.50:0.95-area=large-maxDets=100": "AR-L",
    "estimated_fps": "FPS(*)",
    "hub_license": "hub license",
}

eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()

if not csv_results.exists():
    raise Exception(f"CSV file {csv_results} does not exist locally")

# Get csv with data and parse columns
original_df = pd.read_csv(csv_results)
lst_evaluated_models = original_df["model"].tolist()
lst_evaluated_models = list(map(str.lower, lst_evaluated_models))


# Formats the columns
def decimal_formatter(x):
    x = "{:.2f}".format(x)
    return x


def perc_formatter(x):
    x = "{:.2%}".format(x)
    while len(x) < 6:
        x = f"0{x}"
    return x


# Drop columns not specified in dictionary
cols_to_drop = [col for col in original_df.columns if col not in column_names]
original_df.drop(cols_to_drop, axis=1, inplace=True)

for col in original_df.columns:
    if col == "model":
        original_df[col] = original_df[col].apply(
            lambda x: x.replace(x, make_clickable_model(x))
        )
    elif col == "estimated_fps":
        original_df[col] = original_df[col].apply(
            decimal_formatter
        )  # For decimal values
    elif col == "hub_license":
        continue
    else:
        original_df[col] = original_df[col].apply(perc_formatter)  # For % values

original_df.rename(columns=column_names, inplace=True)

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]


def request_model(model_text, chbcoco2017):
    # Determine the selected checkboxes
    dataset_selection = []
    if chbcoco2017:
        dataset_selection.append("COCO validation 2017 dataset")

    if len(dataset_selection) == 0:
        return styled_error("You need to select at least one dataset")

    # Check if model exists on the hub
    base_model_on_hub, error_msg = is_model_on_hub(model_text)
    if not base_model_on_hub:
        return styled_error(f"Base model '{model_text}' {error_msg}")

    # Check if model is already evaluated
    model_text = model_text.replace(" ", "")
    if model_text.lower() in lst_evaluated_models:
        return styled_error(
            f"Results of the model '{model_text}' are now ready and available."
        )

    # Construct the output dictionary
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    required_datasets = ", ".join(dataset_selection)
    eval_entry = {
        "date": current_time,
        "model": model_text,
        "datasets_selected": required_datasets,
    }

    # Prepare file path
    DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)

    fn_datasets = "@ ".join(dataset_selection)
    filename = model_text.replace("/", "@") + "@@" + fn_datasets
    if filename in requested_models:
        return styled_error(
            f"A request for this model '{model_text}' and dataset(s) was already made."
        )
    try:
        filename_ext = filename + ".txt"
        out_filepath = DIR_OUTPUT_REQUESTS / filename_ext

        # Write the results to a text file
        with open(out_filepath, "w") as f:
            f.write(json.dumps(eval_entry))

        upload_file(filename, out_filepath)

        # Include file in the list of uploaded files
        requested_models.append(filename)

        # Remove the local file
        out_filepath.unlink()

        return styled_message(
            "πŸ€— Your request has been submitted and will be evaluated soon!</p>"
        )
    except Exception:
        return styled_error("Error submitting request!")


with gr.Blocks() as demo:
    gr.HTML(BANNER, elem_id="banner")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… COCO val 2017", elem_id="od-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

        with gr.TabItem("πŸ“ˆ Metrics", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")

        with gr.TabItem(
            "βœ‰οΈβœ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2
        ):
            with gr.Column():
                gr.Markdown(
                    "# βœ‰οΈβœ¨ Request results for a new model here!",
                    elem_classes="markdown-text",
                )
            with gr.Column():
                gr.Markdown("Select a dataset:", elem_classes="markdown-text")
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name (user_name/model_name)"
                    )
                    chb_coco2017 = gr.Checkbox(
                        label="COCO validation 2017 dataset",
                        visible=False,
                        value=True,
                        interactive=False,
                    )
                with gr.Column():
                    mdw_submission_result = gr.Markdown()
                    btn_submitt = gr.Button(value="πŸš€ Request")
                    btn_submitt.click(
                        request_model,
                        [model_name_textbox, chb_coco2017],
                        mdw_submission_result,
                    )

    gr.Markdown(
        f'(*) FPS was measured using *{GPU_MODEL}* processing 1 image per batch. Refer to the πŸ“ˆ "Metrics" tab for further details.',
        elem_classes="markdown-text",
    )
    gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_TEXT,
                lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.launch()