Spaces:
Runtime error
Runtime error
Replacing deprecated Repository with git
Browse files
init.py
CHANGED
@@ -1,48 +1,51 @@
|
|
1 |
-
import os
|
2 |
from constants import EVAL_REQUESTS_PATH
|
3 |
from pathlib import Path
|
4 |
-
from huggingface_hub import HfApi
|
5 |
from dotenv import load_dotenv
|
|
|
|
|
6 |
|
7 |
load_dotenv()
|
|
|
|
|
8 |
TOKEN_HUB = os.environ.get("TOKEN_HUB_V2", None)
|
|
|
9 |
QUEUE_REPO = os.environ.get("QUEUE_REPO", None)
|
|
|
10 |
QUEUE_PATH = os.environ.get("QUEUE_PATH", None)
|
11 |
|
12 |
hf_api = HfApi(
|
13 |
-
endpoint="https://huggingface.co",
|
14 |
-
token=TOKEN_HUB,
|
15 |
)
|
16 |
|
|
|
17 |
def load_all_info_from_dataset_hub():
|
18 |
eval_queue_repo = None
|
19 |
-
|
20 |
requested_models = None
|
21 |
|
22 |
-
passed = True
|
23 |
if TOKEN_HUB is None:
|
24 |
-
|
|
|
|
|
|
|
25 |
else:
|
26 |
print("Pulling evaluation requests and results.")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
repo_type="dataset",
|
33 |
)
|
34 |
-
|
35 |
-
|
36 |
# Local directory where dataset repo is cloned + folder with eval requests
|
37 |
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
38 |
requested_models = get_all_requested_models(directory)
|
39 |
requested_models = [p.stem for p in requested_models]
|
40 |
# Local directory where dataset repo is cloned
|
41 |
csv_results = get_csv_with_results(QUEUE_PATH)
|
42 |
-
if csv_results is None:
|
43 |
-
passed = False
|
44 |
-
if not passed:
|
45 |
-
print("No HuggingFace token provided. Skipping evaluation requests and results.")
|
46 |
|
47 |
return eval_queue_repo, requested_models, csv_results
|
48 |
|
@@ -51,18 +54,21 @@ def upload_file(requested_model_name, path_or_fileobj):
|
|
51 |
dest_repo_file = Path(EVAL_REQUESTS_PATH) / path_or_fileobj.name
|
52 |
dest_repo_file = str(dest_repo_file)
|
53 |
hf_api.upload_file(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
def get_all_requested_models(directory):
|
62 |
directory = Path(directory)
|
63 |
all_requested_models = list(directory.glob("*.txt"))
|
64 |
return all_requested_models
|
65 |
|
|
|
66 |
def get_csv_with_results(directory):
|
67 |
directory = Path(directory)
|
68 |
all_csv_files = list(directory.glob("*.csv"))
|
@@ -72,16 +78,21 @@ def get_csv_with_results(directory):
|
|
72 |
return latest[0]
|
73 |
|
74 |
|
75 |
-
|
76 |
def is_model_on_hub(model_name, revision="main") -> bool:
|
77 |
try:
|
78 |
-
model_name = model_name.replace(" ","")
|
79 |
author = model_name.split("/")[0]
|
80 |
model_id = model_name.split("/")[1]
|
81 |
if len(author) == 0 or len(model_id) == 0:
|
82 |
-
return
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
try:
|
87 |
models = list(hf_api.list_models(author=author, search=model_id))
|
|
|
|
|
1 |
from constants import EVAL_REQUESTS_PATH
|
2 |
from pathlib import Path
|
3 |
+
from huggingface_hub import HfApi
|
4 |
from dotenv import load_dotenv
|
5 |
+
import git
|
6 |
+
import os
|
7 |
|
8 |
load_dotenv()
|
9 |
+
|
10 |
+
# Hub to access the dataset repo
|
11 |
TOKEN_HUB = os.environ.get("TOKEN_HUB_V2", None)
|
12 |
+
# Name of the repo where the dataset is stored user/repo_name
|
13 |
QUEUE_REPO = os.environ.get("QUEUE_REPO", None)
|
14 |
+
# Local path where the repo is cloned to
|
15 |
QUEUE_PATH = os.environ.get("QUEUE_PATH", None)
|
16 |
|
17 |
hf_api = HfApi(
|
18 |
+
endpoint="https://huggingface.co",
|
19 |
+
token=TOKEN_HUB,
|
20 |
)
|
21 |
|
22 |
+
|
23 |
def load_all_info_from_dataset_hub():
|
24 |
eval_queue_repo = None
|
25 |
+
csv_results = None
|
26 |
requested_models = None
|
27 |
|
|
|
28 |
if TOKEN_HUB is None:
|
29 |
+
print(
|
30 |
+
"No HuggingFace token provided. Skipping evaluation requests and results."
|
31 |
+
)
|
32 |
+
return eval_queue_repo, requested_models, csv_results
|
33 |
else:
|
34 |
print("Pulling evaluation requests and results.")
|
35 |
|
36 |
+
# Pull the dataset repo
|
37 |
+
user_name = QUEUE_REPO.split("/")[0]
|
38 |
+
repo_url = (
|
39 |
+
f"https://{user_name}:{TOKEN_HUB}@huggingface.co/datasets/{QUEUE_REPO}"
|
|
|
40 |
)
|
41 |
+
git.Repo.clone_from(repo_url, QUEUE_PATH)
|
42 |
+
|
43 |
# Local directory where dataset repo is cloned + folder with eval requests
|
44 |
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
45 |
requested_models = get_all_requested_models(directory)
|
46 |
requested_models = [p.stem for p in requested_models]
|
47 |
# Local directory where dataset repo is cloned
|
48 |
csv_results = get_csv_with_results(QUEUE_PATH)
|
|
|
|
|
|
|
|
|
49 |
|
50 |
return eval_queue_repo, requested_models, csv_results
|
51 |
|
|
|
54 |
dest_repo_file = Path(EVAL_REQUESTS_PATH) / path_or_fileobj.name
|
55 |
dest_repo_file = str(dest_repo_file)
|
56 |
hf_api.upload_file(
|
57 |
+
path_or_fileobj=path_or_fileobj,
|
58 |
+
path_in_repo=str(dest_repo_file),
|
59 |
+
repo_id=QUEUE_REPO,
|
60 |
+
token=TOKEN_HUB,
|
61 |
+
repo_type="dataset",
|
62 |
+
commit_message=f"Add {requested_model_name} to eval queue",
|
63 |
+
)
|
64 |
+
|
65 |
|
66 |
def get_all_requested_models(directory):
|
67 |
directory = Path(directory)
|
68 |
all_requested_models = list(directory.glob("*.txt"))
|
69 |
return all_requested_models
|
70 |
|
71 |
+
|
72 |
def get_csv_with_results(directory):
|
73 |
directory = Path(directory)
|
74 |
all_csv_files = list(directory.glob("*.csv"))
|
|
|
78 |
return latest[0]
|
79 |
|
80 |
|
|
|
81 |
def is_model_on_hub(model_name, revision="main") -> bool:
|
82 |
try:
|
83 |
+
model_name = model_name.replace(" ", "")
|
84 |
author = model_name.split("/")[0]
|
85 |
model_id = model_name.split("/")[1]
|
86 |
if len(author) == 0 or len(model_id) == 0:
|
87 |
+
return (
|
88 |
+
False,
|
89 |
+
"is not a valid model name. Please use the format `author/model_name`.",
|
90 |
+
)
|
91 |
+
except Exception:
|
92 |
+
return (
|
93 |
+
False,
|
94 |
+
"is not a valid model name. Please use the format `author/model_name`.",
|
95 |
+
)
|
96 |
|
97 |
try:
|
98 |
models = list(hf_api.list_models(author=author, search=model_id))
|