from threading import Thread
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
BANNER_HTML = """
The demo is mainly for academic purposes. Illegal usages are prohibited. Default model: hfl/llama-3-chinese-8b-instruct-v3
"""
DEFAULT_SYSTEM_PROMPT = "You are a helpful assistant. 你是一个乐于助人的助手。"
# Load different instruct models based on the selected version
def load_model(version):
global tokenizer, model
if version == "v1":
model_name = "hfl/llama-3-chinese-8b-instruct"
elif version == "v2":
model_name = "hfl/llama-3-chinese-8b-instruct-v2"
elif version == "v3":
model_name = "hfl/llama-3-chinese-8b-instruct-v3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="flash_attention_2")
return f"Model {model_name} loaded."
@spaces.GPU(duration=60)
def stream_chat(message: str, history: list, system_prompt: str, model_version: str, temperature: float, max_new_tokens: int):
conversation = [{"role": "system", "content": system_prompt or DEFAULT_SYSTEM_PROMPT}]
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"eos_token_id": terminators,
"pad_token_id": tokenizer.eos_token_id,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_k": 40,
"top_p": 0.9,
"num_beams": 1,
"repetition_penalty": 1.1,
"do_sample": temperature != 0,
}
generation_thread = Thread(target=model.generate, kwargs=generate_kwargs)
generation_thread.start()
output = ""
for new_token in streamer:
output += new_token
yield output
chatbot = gr.Chatbot(height=500)
with gr.Blocks() as demo:
gr.HTML(BANNER_HTML)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="Parameters / 参数设置", open=False, render=False),
additional_inputs=[
gr.Text(value=DEFAULT_SYSTEM_PROMPT, label="System Prompt / 系统提示词", render=False),
gr.Radio(choices=["v1", "v2", "v3"], label="Model Version / 模型版本", value="v3", interactive=False, render=False),
gr.Slider(minimum=0, maximum=1.5, step=0.1, value=0.6, label="Temperature / 温度系数", render=False),
gr.Slider(minimum=128, maximum=2048, step=1, value=512, label="Max new tokens / 最大生成长度", render=False),
],
cache_examples=False,
submit_btn="Send / 发送",
stop_btn="Stop / 停止",
retry_btn="🔄 Retry / 重试",
undo_btn="↩️ Undo / 撤销",
clear_btn="🗑️ Clear / 清空",
)
if __name__ == "__main__":
load_model("v3") # Load the default model
demo.launch()