Spaces:
Build error
Build error
Add rhyme_generator.py
Browse files- app.py +3 -176
- rhyme_with_ai/__init__.py +0 -0
- rhyme_with_ai/rhyme_generator.py +183 -0
app.py
CHANGED
@@ -2,13 +2,12 @@ import copy
|
|
2 |
import logging
|
3 |
from typing import List
|
4 |
|
5 |
-
import numpy as np
|
6 |
-
import tensorflow as tf
|
7 |
import streamlit as st
|
8 |
from transformers import BertTokenizer, TFAutoModelForMaskedLM
|
9 |
-
|
10 |
-
from rhyme_with_ai.
|
11 |
from rhyme_with_ai.rhyme import query_rhyme_words
|
|
|
12 |
|
13 |
|
14 |
DEFAULT_QUERY = "Machines will take over the world soon"
|
@@ -99,178 +98,6 @@ def display_output(status_text, query, current_sentences, previous_sentences):
|
|
99 |
)
|
100 |
|
101 |
|
102 |
-
class RhymeGenerator:
|
103 |
-
def __init__(
|
104 |
-
self,
|
105 |
-
model: TFAutoModelForMaskedLM,
|
106 |
-
tokenizer: BertTokenizer,
|
107 |
-
token_weighter: TokenWeighter = None,
|
108 |
-
):
|
109 |
-
"""Generate rhymes.
|
110 |
-
|
111 |
-
Parameters
|
112 |
-
----------
|
113 |
-
model : Model for masked language modelling
|
114 |
-
tokenizer : Tokenizer for model
|
115 |
-
token_weighter : Class that weighs tokens
|
116 |
-
"""
|
117 |
-
|
118 |
-
self.model = model
|
119 |
-
self.tokenizer = tokenizer
|
120 |
-
if token_weighter is None:
|
121 |
-
token_weighter = TokenWeighter(tokenizer)
|
122 |
-
self.token_weighter = token_weighter
|
123 |
-
self._logger = logging.getLogger(__name__)
|
124 |
-
|
125 |
-
self.tokenized_rhymes_ = None
|
126 |
-
self.position_probas_ = None
|
127 |
-
|
128 |
-
# Easy access.
|
129 |
-
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
130 |
-
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
131 |
-
self.mask_token_id = self.tokenizer.mask_token_id
|
132 |
-
|
133 |
-
def start(self, query: str, rhyme_words: List[str]) -> None:
|
134 |
-
"""Start the sentence generator.
|
135 |
-
|
136 |
-
Parameters
|
137 |
-
----------
|
138 |
-
query : Seed sentence
|
139 |
-
rhyme_words : Rhyme words for next sentence
|
140 |
-
"""
|
141 |
-
# TODO: What if no content?
|
142 |
-
self._logger.info("Got sentence %s", query)
|
143 |
-
tokenized_rhymes = [
|
144 |
-
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
145 |
-
]
|
146 |
-
# Make same length.
|
147 |
-
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
148 |
-
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
149 |
-
)
|
150 |
-
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
151 |
-
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
152 |
-
|
153 |
-
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
154 |
-
"""Initialize the rhymes.
|
155 |
-
|
156 |
-
* Tokenize input
|
157 |
-
* Append a comma if the sentence does not end in it (might add better predictions as it
|
158 |
-
shows the two sentence parts are related)
|
159 |
-
* Make second line as long as the original
|
160 |
-
* Add a period
|
161 |
-
|
162 |
-
Parameters
|
163 |
-
----------
|
164 |
-
query : First line
|
165 |
-
rhyme_word : Last word for second line
|
166 |
-
|
167 |
-
Returns
|
168 |
-
-------
|
169 |
-
Tokenized rhyme lines
|
170 |
-
"""
|
171 |
-
|
172 |
-
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
173 |
-
rhyme_word_token_ids = self.tokenizer.encode(
|
174 |
-
rhyme_word, add_special_tokens=False
|
175 |
-
)
|
176 |
-
|
177 |
-
if query_token_ids[-1] != self.comma_token_id:
|
178 |
-
query_token_ids.append(self.comma_token_id)
|
179 |
-
|
180 |
-
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
181 |
-
return (
|
182 |
-
query_token_ids
|
183 |
-
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
184 |
-
+ rhyme_word_token_ids
|
185 |
-
+ [self.period_token_id]
|
186 |
-
)
|
187 |
-
|
188 |
-
def mutate(self):
|
189 |
-
"""Mutate the current rhymes.
|
190 |
-
|
191 |
-
Returns
|
192 |
-
-------
|
193 |
-
Mutated rhymes
|
194 |
-
"""
|
195 |
-
self.tokenized_rhymes_ = self._mutate(
|
196 |
-
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
197 |
-
)
|
198 |
-
|
199 |
-
rhymes = []
|
200 |
-
for i in range(len(self.tokenized_rhymes_)):
|
201 |
-
rhymes.append(
|
202 |
-
self.tokenizer.convert_tokens_to_string(
|
203 |
-
self.tokenizer.convert_ids_to_tokens(
|
204 |
-
self.tokenized_rhymes_[i], skip_special_tokens=True
|
205 |
-
)
|
206 |
-
)
|
207 |
-
)
|
208 |
-
return rhymes
|
209 |
-
|
210 |
-
def _mutate(
|
211 |
-
self,
|
212 |
-
tokenized_rhymes: np.ndarray,
|
213 |
-
position_probas: np.ndarray,
|
214 |
-
token_id_probas: np.ndarray,
|
215 |
-
) -> np.ndarray:
|
216 |
-
|
217 |
-
replacements = []
|
218 |
-
for i in range(tokenized_rhymes.shape[0]):
|
219 |
-
mask_idx, masked_token_ids = self._mask_token(
|
220 |
-
tokenized_rhymes[i], position_probas[i]
|
221 |
-
)
|
222 |
-
tokenized_rhymes[i] = masked_token_ids
|
223 |
-
replacements.append(mask_idx)
|
224 |
-
|
225 |
-
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
226 |
-
|
227 |
-
for i, token_ids in enumerate(tokenized_rhymes):
|
228 |
-
replace_ix = replacements[i]
|
229 |
-
token_ids[replace_ix] = self._draw_replacement(
|
230 |
-
predictions[i], token_id_probas, replace_ix
|
231 |
-
)
|
232 |
-
tokenized_rhymes[i] = token_ids
|
233 |
-
|
234 |
-
return tokenized_rhymes
|
235 |
-
|
236 |
-
def _mask_token(self, token_ids, position_probas):
|
237 |
-
"""Mask line and return index to update."""
|
238 |
-
token_ids = self._mask_repeats(token_ids, position_probas)
|
239 |
-
ix = self._locate_mask(token_ids, position_probas)
|
240 |
-
token_ids[ix] = self.mask_token_id
|
241 |
-
return ix, token_ids
|
242 |
-
|
243 |
-
def _locate_mask(self, token_ids, position_probas):
|
244 |
-
"""Update masks or a random token."""
|
245 |
-
if self.mask_token_id in token_ids:
|
246 |
-
# Already masks present, just return the last.
|
247 |
-
# We used to return thee first but this returns worse predictions.
|
248 |
-
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
249 |
-
return np.random.choice(range(len(position_probas)), p=position_probas)
|
250 |
-
|
251 |
-
def _mask_repeats(self, token_ids, position_probas):
|
252 |
-
"""Repeated tokens are generally of less quality."""
|
253 |
-
repeats = [
|
254 |
-
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
255 |
-
]
|
256 |
-
for ii in repeats:
|
257 |
-
if position_probas[ii] > 0:
|
258 |
-
token_ids[ii] = self.mask_token_id
|
259 |
-
if position_probas[ii + 1] > 0:
|
260 |
-
token_ids[ii + 1] = self.mask_token_id
|
261 |
-
return token_ids
|
262 |
-
|
263 |
-
def _predict_masked_tokens(self, tokenized_rhymes):
|
264 |
-
return self.model(tf.constant(tokenized_rhymes))[0]
|
265 |
-
|
266 |
-
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
267 |
-
"""Get probability, weigh and draw."""
|
268 |
-
# TODO (HG): Can't we softmax when calling the model?
|
269 |
-
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
270 |
-
probas /= probas.sum()
|
271 |
-
return np.random.choice(range(len(probas)), p=probas)
|
272 |
-
|
273 |
-
|
274 |
|
275 |
if __name__ == "__main__":
|
276 |
logging.basicConfig(level=logging.INFO)
|
|
|
2 |
import logging
|
3 |
from typing import List
|
4 |
|
|
|
|
|
5 |
import streamlit as st
|
6 |
from transformers import BertTokenizer, TFAutoModelForMaskedLM
|
7 |
+
|
8 |
+
from rhyme_with_ai.utils import color_new_words, sanitize
|
9 |
from rhyme_with_ai.rhyme import query_rhyme_words
|
10 |
+
from rhyme_with_ai.rhyme_generator import RhymeGenerator
|
11 |
|
12 |
|
13 |
DEFAULT_QUERY = "Machines will take over the world soon"
|
|
|
98 |
)
|
99 |
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
logging.basicConfig(level=logging.INFO)
|
rhyme_with_ai/__init__.py
ADDED
File without changes
|
rhyme_with_ai/rhyme_generator.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from transformers import BertTokenizer, TFAutoModelForMaskedLM
|
7 |
+
|
8 |
+
from rhyme_with_ai.token_weighter import TokenWeighter
|
9 |
+
from rhyme_with_ai.utils import pairwise
|
10 |
+
|
11 |
+
|
12 |
+
class RhymeGenerator:
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
model: TFAutoModelForMaskedLM,
|
16 |
+
tokenizer: BertTokenizer,
|
17 |
+
token_weighter: TokenWeighter = None,
|
18 |
+
):
|
19 |
+
"""Generate rhymes.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
model : Model for masked language modelling
|
24 |
+
tokenizer : Tokenizer for model
|
25 |
+
token_weighter : Class that weighs tokens
|
26 |
+
"""
|
27 |
+
|
28 |
+
self.model = model
|
29 |
+
self.tokenizer = tokenizer
|
30 |
+
if token_weighter is None:
|
31 |
+
token_weighter = TokenWeighter(tokenizer)
|
32 |
+
self.token_weighter = token_weighter
|
33 |
+
self._logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
self.tokenized_rhymes_ = None
|
36 |
+
self.position_probas_ = None
|
37 |
+
|
38 |
+
# Easy access.
|
39 |
+
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
40 |
+
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
41 |
+
self.mask_token_id = self.tokenizer.mask_token_id
|
42 |
+
|
43 |
+
def start(self, query: str, rhyme_words: List[str]) -> None:
|
44 |
+
"""Start the sentence generator.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
query : Seed sentence
|
49 |
+
rhyme_words : Rhyme words for next sentence
|
50 |
+
"""
|
51 |
+
# TODO: What if no content?
|
52 |
+
self._logger.info("Got sentence %s", query)
|
53 |
+
tokenized_rhymes = [
|
54 |
+
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
55 |
+
]
|
56 |
+
# Make same length.
|
57 |
+
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
58 |
+
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
59 |
+
)
|
60 |
+
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
61 |
+
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
62 |
+
|
63 |
+
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
64 |
+
"""Initialize the rhymes.
|
65 |
+
|
66 |
+
* Tokenize input
|
67 |
+
* Append a comma if the sentence does not end in it (might add better predictions as it
|
68 |
+
shows the two sentence parts are related)
|
69 |
+
* Make second line as long as the original
|
70 |
+
* Add a period
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
query : First line
|
75 |
+
rhyme_word : Last word for second line
|
76 |
+
|
77 |
+
Returns
|
78 |
+
-------
|
79 |
+
Tokenized rhyme lines
|
80 |
+
"""
|
81 |
+
|
82 |
+
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
83 |
+
rhyme_word_token_ids = self.tokenizer.encode(
|
84 |
+
rhyme_word, add_special_tokens=False
|
85 |
+
)
|
86 |
+
|
87 |
+
if query_token_ids[-1] != self.comma_token_id:
|
88 |
+
query_token_ids.append(self.comma_token_id)
|
89 |
+
|
90 |
+
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
91 |
+
return (
|
92 |
+
query_token_ids
|
93 |
+
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
94 |
+
+ rhyme_word_token_ids
|
95 |
+
+ [self.period_token_id]
|
96 |
+
)
|
97 |
+
|
98 |
+
def mutate(self):
|
99 |
+
"""Mutate the current rhymes.
|
100 |
+
|
101 |
+
Returns
|
102 |
+
-------
|
103 |
+
Mutated rhymes
|
104 |
+
"""
|
105 |
+
self.tokenized_rhymes_ = self._mutate(
|
106 |
+
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
107 |
+
)
|
108 |
+
|
109 |
+
rhymes = []
|
110 |
+
for i in range(len(self.tokenized_rhymes_)):
|
111 |
+
rhymes.append(
|
112 |
+
self.tokenizer.convert_tokens_to_string(
|
113 |
+
self.tokenizer.convert_ids_to_tokens(
|
114 |
+
self.tokenized_rhymes_[i], skip_special_tokens=True
|
115 |
+
)
|
116 |
+
)
|
117 |
+
)
|
118 |
+
return rhymes
|
119 |
+
|
120 |
+
def _mutate(
|
121 |
+
self,
|
122 |
+
tokenized_rhymes: np.ndarray,
|
123 |
+
position_probas: np.ndarray,
|
124 |
+
token_id_probas: np.ndarray,
|
125 |
+
) -> np.ndarray:
|
126 |
+
|
127 |
+
replacements = []
|
128 |
+
for i in range(tokenized_rhymes.shape[0]):
|
129 |
+
mask_idx, masked_token_ids = self._mask_token(
|
130 |
+
tokenized_rhymes[i], position_probas[i]
|
131 |
+
)
|
132 |
+
tokenized_rhymes[i] = masked_token_ids
|
133 |
+
replacements.append(mask_idx)
|
134 |
+
|
135 |
+
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
136 |
+
|
137 |
+
for i, token_ids in enumerate(tokenized_rhymes):
|
138 |
+
replace_ix = replacements[i]
|
139 |
+
token_ids[replace_ix] = self._draw_replacement(
|
140 |
+
predictions[i], token_id_probas, replace_ix
|
141 |
+
)
|
142 |
+
tokenized_rhymes[i] = token_ids
|
143 |
+
|
144 |
+
return tokenized_rhymes
|
145 |
+
|
146 |
+
def _mask_token(self, token_ids, position_probas):
|
147 |
+
"""Mask line and return index to update."""
|
148 |
+
token_ids = self._mask_repeats(token_ids, position_probas)
|
149 |
+
ix = self._locate_mask(token_ids, position_probas)
|
150 |
+
token_ids[ix] = self.mask_token_id
|
151 |
+
return ix, token_ids
|
152 |
+
|
153 |
+
def _locate_mask(self, token_ids, position_probas):
|
154 |
+
"""Update masks or a random token."""
|
155 |
+
if self.mask_token_id in token_ids:
|
156 |
+
# Already masks present, just return the last.
|
157 |
+
# We used to return thee first but this returns worse predictions.
|
158 |
+
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
159 |
+
return np.random.choice(range(len(position_probas)), p=position_probas)
|
160 |
+
|
161 |
+
def _mask_repeats(self, token_ids, position_probas):
|
162 |
+
"""Repeated tokens are generally of less quality."""
|
163 |
+
repeats = [
|
164 |
+
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
165 |
+
]
|
166 |
+
for ii in repeats:
|
167 |
+
if position_probas[ii] > 0:
|
168 |
+
token_ids[ii] = self.mask_token_id
|
169 |
+
if position_probas[ii + 1] > 0:
|
170 |
+
token_ids[ii + 1] = self.mask_token_id
|
171 |
+
return token_ids
|
172 |
+
|
173 |
+
def _predict_masked_tokens(self, tokenized_rhymes):
|
174 |
+
return self.model(tf.constant(tokenized_rhymes))[0]
|
175 |
+
|
176 |
+
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
177 |
+
"""Get probability, weigh and draw."""
|
178 |
+
# TODO (HG): Can't we softmax when calling the model?
|
179 |
+
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
180 |
+
probas /= probas.sum()
|
181 |
+
return np.random.choice(range(len(probas)), p=probas)
|
182 |
+
|
183 |
+
|